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Preface

What I understood from this course is that abstract algebra is an introductory course in nature, briefly touching
many different topics here and there. It is not a well-defined body of knowledge, it has a standard list of topics
to learn, but it is very optional to how one may want to approach them.

This textbook is a collection of notes from an undergraduate course in Abstract Algebra. This is not meant
to replace a textbook in any manner. Take what I have in this textbook with a pound of salt, as it has weight to
it but is not impossible to throw over. It is filled with explanations in a way that I try to explain to others as if
I were talking to you. I have dealt with a novelesque textbook this semester, and trust me it will not be like me
talking to you without having to decipher the theorems and proofs in the text. I use exercises that I found were
fun to solve while also grasping the content material and being able to solve them.

As most of you will want and expect, there is a solutions page at the end of the textbook and it is very much my
own solutions. Some of them may not be the best or most efficient way to solve them. I may have also lost points
in class for some of the problems, however, this is definitely going to be community-based help if you would like
me to correct a solution and I will be happy to credit you in the next revision of the textbook. Feel free to contact
me through email.

Now a common objection to the course here at the University of Georgia is that we learn rings before groups, and
from what I know, I definitely do agree with this objection. However, I will leave the text as is in the sequence
of topics that I learned.

I included an extra section that I did not go over but was definitely something that is important to remem-
ber and learn about. This being, the first chapter: Introduction to Algebra. If you have not taken a proofs-based
course or had a rough start, I highly heed you look at this section.

I am really into open courseware, which means this will always be open for everyone to use and distribute
as long as you have the page that includes my credits, which is Pages 1 and 2.

Looking into this textbook, we definitely see a drop off in quality coming around midway through Chapter
3, ”Congruence Classes in Z”. 1 prioritized getting definitions and theorems across more than the explanations
for each one, but it does actively reflect how the class is modeled. I believe perhaps looking back there was a
heavy explanation-based class which dropped off as the course progressed into more and more theory rather than
practicality (theory in secret). This picked back up here and there for example with rings and polynomials, but
went back to straight claims.

The audience I did write this for was content with my half-done work, but I will be updating this as I go
down the line, especially since this only considers one term of the course.

Coming into term two of the course, I started to study a little different. Instead of only containing my class
notes, I wanted to include a lot more comments into the coursework and this improvement started to allow me
to do better on the tests and homework without having to rely on others to understand homework problems and
so forth. I have started doing Anki decks of the theorems, doing the ungraded practice problems, and also the
practice exams and quizzes that Dr. C provides. These are an effective way of learning. For retaking notes on
content, I find a similar video on Youtube and take notes from that content.



Semester Two Preface coming soon!



Chapter 1

Introduction to Algebra

The content in this chapter is things to know by heart. We will not be going back and explaining the content
discussed in this chapter.

1.1 Logic

For those coming from a pure symbolic proofs-based class, this text will definitely be a bit striking as I don’t like
using symbols every time they can be used. It’s easier to convey thoughts by just using words and to depict very
slight meanings that may not be robotic. It is definitely not impossible to do the mental conversion into symbolic
language, however, the way I learned proofs was to use more words than symbols.

As a matter of fact, some classes may even deduct points for the overuse of symbols, and I have heard this
tale through and through from many people. So take what you will, but I hope this will create some change.
If there is one thing to take away from this section is that there is nothing ever wrong with using words over
symbols, while there is the vice versa.

Let P and Q be statements. It should have been discussed in a proof class the difference between statements,
questions, and commands.

”P and Q”: This is true if and only if P and Q are both true. This is denoted by A.

”P or Q”: This is true for all cases of P or Q being true, or false if they are both false. This is denoted by V.
”P implies Q”: We use implications to show that if P has some true or false factor, then we result in Q being
true or false. For example, we usually write this in our English language as: ”If P, then Q”. This means that if
P is true, then Q will also happen. This is true for 3/4 possible outcomes, which means this is true when P and
Q are both true and false, and also true with P is false but Q is true. This is only false if P is true and Q is false.
A false premise is always a true implication to mind you. Implications are denoted by — .

”P if and only if Q”: This is called a biconditional, or an equivalence statement. This is short for saying ”P
implies Q and Q implies P”. This is denoted by < .

"It is not the case that P”: This is true if and only if P is false, also called negation.

1.2 Sets and Classes

Set Theory is very much its own field so we will not be getting into the specifics and the nitty-gritty of each topic,
but it will be a brief overview.

Elements are either a part of a set or not part of a set. There are infinitely many elements and they have a
choice of being a member of a set. When an element, x, is a member of set A we denote this by

x € A.

Otherwise we say

x ¢ A.

. We can also write this out in words as ”x is (not) an element of A”. These are some of the few things most
people use symbols for regardless of their preferences for symbolic language.
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The following are predicates.
1. ”For all” is denoted by V.
2. ”There exists” is denoted by 3.
The axiom of extensionality states given sets A and B. For all elements, x, if x € A and x € B, then A = B.
For all elements, x € A, if x € B, then A is a subset of B, denoted by A C B.
The empty set is a set with no elements, denoted by @.
A class of sets is a set that contains other sets and only sets. The power axiom states that for every set A,
the power class P(A) contains all subsets of A within a set. This is denoted by 24 and has 214! elements.
A union of sets considers all of the elements in both sets, denoted by A |J B
An intersection of sets considers only the common elements in both set, denoted by A () B.
A disjoint set is when given when A (B = @. A family of sets is a class of sets where each element, mind you
a set, is indexed. Generally denoted by | J A; := {x : x € A; for some i € I}. Similarly with () A;.

i€l i€l
The complement of A is related to the negation of A, where we use DeMorgan’s Laws.

1.3 Functions

Given sets A and B, a function will map f from A to B, denoted as f : A +— B. This means that will assign one
element in a € A to exactly one b € B. The a = b written as f(a). Images mean the range of the function. The
domain of f is written as dom f, while B is the co-domain also known as range. Two functions are equal if they
have the same domain, range, and values for each element in the domain.

Suppose S C A, then the function from Sto Bis g : S+ B &= g :a + f(a) for a € S. This is more
known as the restriction of the domain.

Let f : A B and g : B+ C, Then a composite function of h : a +— g(f(a)) is equivalent to h : A — C.
This is called a composite of f and g.

Functions are injective, or one-to-one, if for all a,b € A, a # b implies f(a) # f(b). This means all values
in the domain are only mapped to one value in the co-domain.A surjective function, or onto, is given for all
b € B, b = f(a) for some a € A. This means all values in the co-domain are mapped to at least one value in the
domain. A function is bijective, or one-to-one correspondence, if it is injective and surjective. Given the previous
mappings of f and g, then if f and g are injective, we should check that gf is injective. If ¢f is injective, then
check that f is injective. If f and g are surjective then we should check that gf is surjective. If gf is surjective,
then we should check that g is surjective.

1.4 Relations
A cartesian product of sets A and B gives us
AxB:={(a,b):a€A,b e B}.
Note that AX©@ =2 =@ XB.
An equivalence relation, denoted by ~ from A to B is
e reflexive: a ~ a for all a € A;

e symmetric: a ~ b, then b ~ a for a € A and b € B;

e transitive: a ~b, b ~ ¢, thena ~c for a,b,c € A,B,C



1.5 Well Ordering and Induction

Definition 1.5.1: Well-Ordering

Every nonempty subset of Z>° contains a smallest element.

This takes into account that there is an order relation (j) on all integers of Z. The direct consequence of this
definition is Mathematical Induction. Mathematical Induction is a proof technique that uses recursive techniques
to prove that a statement is true for all elements past its base case.

Theorem 1.5.1 Principle of Mathematical Induction
Assume that n € Z>° and P(n) is given.

1. P(0) is a true statement.

2. When P(k) is true, then P(k + 1) is also true.

Then P(n) is true for all n € Z>°.

A remark on this theorem is that P(k) does not have to be true, but we assume so. This is called the
induction hypothesis. In proofwriting, if we are given an ”If... Then...” statement, we generally assume that
the statement before the ”Then” is true, and attempt to prove the rest. This is the same thing we have proved
through Induction. It can be seen as a result of continued direct proofs compiled together and generalized to
become the induction we know today. The following example is how we use Induction in today’s world, and it’s
important to note how we use it compared to how one may have done it for a proofs course. In other words, a
practical application of how a researcher would use induction.

Example 1.5.1

A set of n elements has 2" subsets

P(0) : 2° = 1 subsets.

P(1) : 2! = 2 subsets.

P(3) : 23 = 8 subsets.

Assume P(k) is a set with k elements and has 2% subsets. Now prove P(k + 1) = 2K*1 subsets.
In a more standardized proofwriting, we can define a set

S:={nezZ?°: P(n)is true},

and show that S = Z>°. Let our induction hypothesis be "P(n) is true”. Since we have shown that our
base case : P(0) is true, then we assume P(k) is true and attempt to prove P(k+1). Let’s suppose that
since P(n) is true, then #S = k, which is the cardinal of set S. If we are to add a new element to set S
and attempt to prove k + 1, every subset has the option to choose between including k + 1 or not including
k + 1. Therefore set S has 2% 2K = 2k*1 subsets. Thus proving k + 1 € S, therefore S = Z>°. |

1.6 A wvariation on Induction

Now with mathematical induction, also just referenced as induction, we can also show another type called Strong
or Complete Induction.

Theorem 1.6.1 Principle of Complete Induction
Assume that n € Z>°, P(n) is given. If
1. P(0) is true, and

2. P(j) is true for all j such that 0 < j < t, then P(t) is also true.




Proof: Let’s prove this through induction. Let our induction hypothesis be if ”P(j) is true for all j such that
0 < j < f, then P(t) is also true” Suppose there is a set S, such that

S:={n ez : P(j)is true for all j such that 0 <j < n}

For our base case, let’s set n = 0, and suppose that 0 € S, thus P(0) is true.
Now assume P(k) is true, therefore P(k+1) is also true due to our induction hypothesis. Therefore k € S and
k +1 € S is true. Therefore by induction, S = Z>°, and we have proved Complete Induction. |

Similar to how we used weak or regular induction to prove complete induction, we can do the same in
reverse. In fact, we can prove all of these theorems and definitions using one another. We can use the well-
ordering axiom to prove mathematical induction and use mathematical induction to prove complete induction.
To complete the loop, prove well ordering through complete induction. On a harder note, we can prove regular
induction through complete induction, but it is possible.

Well — Ordering = Induction

Proof: Let us define the set S as
S:={nez>: P(n)is false} ¢ Z°.

Our goal in this proof is to show that the set S = ¢.

Assume S # ¢. Then let d € S be the smallest element. Let P(0) be true, but this means that d # 0. So that
means d > 1. Soifd—1>1,thend—1¢€Z?°. Sinced—1<d, then d—1€ S, so P(d-1) is true. By assumption
P(d—-1) = P(d) so P(d) is true, so d € S. So S = ¢, therefore P(k) is true for all k € Z>°. ]

Now that we have jump-started the proofwriting structure in our heads, let’s go ahead and start this course
with our next topic: Fundamentals of Arithmetic and Divisibility.

Example 1.6.1 (Exercise 1)
Oa = 0 for any integer a, given 0+ 0 = 0.



Chapter 2

Fundamentals of Arithmetic and
Divisibility

2.1 Axioms

Axioms are trivial definitions used in everyday life — or even mathematics — that we take for granted. They
are definitions that are inarguable and are the core of math today. I never quite understood the hierarchy of
math statements, but this is a way to look at it: Axioms are a specific type of definition that is just taken as a
fact or true. Definitions are similar to axioms in which they build the premise of future statements, these may
or may not include proofs to explain why this may be true. Lemmas are true statements that are not important
in the long run, but are trivial to understand to understand future statements, generally are associated with
proof. Propositions are important statements that must be associated with proof and are vital research building
blocks. Theorems are big conclusion that wraps each concept mentioned in a paper into one central idea and are
even more important than propositions, these also require proofs to be stated alongside the statement. Now the
following axioms or properties are what we accept without another thought, but they are important to mention
to understand future content when they are brought up again.

Definition 2.1.1: Additive Properties

1. Addition is well-defined. Given a,b € Z, a + b is a uniquely defined integer.

2. Substitution Law: Since addition is well-defined, if 2 = b, and ¢ = d, then a+c =0 +d.

Commutative Law: For alla,beZ,a+b=>+a.

= ®

Associative Law: For all a,b,c € Z,(a+b)+c=a+ (b +c).
5. There exists a zero element 0 € Z, called the additive identity, satisfying 0 + a = a for any a € Z.

6. For all a € Z, there exists a unique additive inverse, —a € Z, satisfying a + (—-a) =0

Definition 2.1.2: Multiplicative Properties

Multiplication is well-defined. Given a,b € Z, a - b is a uniquely defined integer.
Substitution Law: If 2 = b and ¢ = d, then ac = bd.

7Z is closed under multiplication, for all a,b € Z, a - b € Z.
Commutative Law: For all a,b € Z, ab = ba.

Associative Law: For all a,b,c € Z,(ab)c = a(bc)

1 € Z is the multiplicative identity, satisfying 1a
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Definition 2.1.3: Distributive Property

For alla,b,c € Z,a(b+c) =ab + ac.

Definition 2.1.4: Trichotomy Principle

7 can be split into three distinct sets.

Z=-NU{0}UN

Definition 2.1.5: Positivity Axiom

The sum or product of positive integers is positive.

Definition 2.1.6: Discrete Property

We have learned these already but they are the Well-Ordering Principle of N, and the Principle of Induction.

2.2 Division

Now that we have learned the axioms of arithmetic, let us learn about the division algorithm.
We have all (hopefully) learned how to divide in grade school. As a revision, you can divide a number evenly by
some other number and whatever is left over will result as the remainder. This can be written more formally as:

dividend = (divisor)(quotient) + (remainder)

Now there is an important understanding I wanted to show to the audience. Every basic arithmetic operation
can be written in terms of addition and multiplication. We will later see with rings that we make our lives easier
by doing subtraction which shows both an inverse and additive property. But for now, that’s all mumbo jumbo.

Theorem 2.2.1 Division Algorithm
Suppose a,b € Z,b > 0,a = qb + r such that 3q,r € Z, with 0 < r < b.

Proof: Let there be set S such that

S={a—xb:a-xb>0,x€Z}

Check S # ¢

Given a and b, find x, such that a —xb. If a > 0, let x =0, thena —xb = a > 0.
If a <0 and let x = a, then a —ab = a(l — b), and since b > 0,b > 1, therefore 1 —b < 0.
Since S # ¢ then S is well-ordered. Jr € S, such that r is the smallest element of S.

Claim: r > 0 and r < b. Since r € S,3q € Z such that r > 0 and r = a — gb. Prove that r < b.
Suppose r > b, then we can let

d=a-(g+1)b
=a—-qgb-"»
=r-b
r-b>0

So0<b<r,d=a—-(q+1)b, therefore d € S, but d < r. Therefore we have a contradiction that r is the smallest
element of S, therefore r < b. [



There is a lot to dissect here. I want to dedicate special focus to this theorem. This will lay the foundation
so glance your eyes on this beauty and take it in its glory. But in all seriousness, this is a really important topic
to take in so let’s explain it thoroughly. Similar to what we have in Figure 2.1 with the dividend equation, we
just broke it down and generalized it using proof notation. So given that ”a” is some dividend, we have divisor
”b”, and quotient ”q” that are multiplied then added with remainder ”r”. There is also a reason why the division
algorithm requires that r be less than b but at minimum 0. This may be trivial, but if r is greater than b, we
can subtract r-b, and get the new remainder. It has the most optimized equation. Now that we understand what
we are doing in more understandable terms, let us look at our proof itself and implement it as a core memory as
how a child may remember their guardian.

Example 2.2.1
Let S be a set of remainders. We can do this through example. If

a=281
b=38

x is a variable
r=a-—bx

If we let x = 1 for example, then r = 73.

If we let x = 4 for example, then r = 49.

If we let x = 10 for example, then r = 1.

If we let x = 11 for example, then r = -7.

However, r can only be at minimum 0, therefore r cannot be -7.

Therefore our most optimized r is when x = 10.

Of course, x can go in the opposite direction, since we did not bound Z only to non-negative integers.

Thus we have shown an example of the division algorithm. Now that we understand the values that set S
can contain, even though we have provided proof, we must still prove this through math and generalize it. And
that’s exactly what we spend the rest of the proof doing. We answer questions in this proof such as, what if a is
greater than 0 or less than 0?7 And what happens if r is greater than b, which we show that r is not the smallest
integer which means we can technically have a solution of

Example 2.2.2

a =281
b=38
xisavariable
r=a—>bx

If we let x = 1 for example, then r = 73.

If we let x = 4 for example, then r = 49.

If we let x = 10 for example, then r = 1.

If we let x = 11 for example, then r = -7.

However, r can only be at minimum 0, therefore r cannot be -7.

Therefore our most optimized r is when x = 10.

Of course, x can go in the opposite direction since we did not bound Z only to non-negative integers.

Thus we have shown an example of the division algorithm. Now that we understand the values that set S
can contain, even though we have provided proof, we must still prove this through math and generalize it. And
that’s exactly what we spend the rest of the proof doing. We answer questions in this proof such as, what if a is
greater than 0 or less than 0?7 And what happens if r is greater than b, which we show that r is not the smallest



integer which means we can technically have a solution of

a =200
b=2

x =10

r = 180,

and this is a valid solution by the division algorithm if we did allow r to not be the smallest, even though we
know it’s not exactly true.

Proposition 2.2.1 Uniqueness in the Division Algorithm

The integers g,r € Z, in the division algorithm are unique.

Proof: Givena € Z and b € Z>°, Suppose a = q1b +r1, such that g1,71 € Z and 0 < r; < b. Also suppose that
a = q2b + o, such that go, 72 € Z and 0 < ry < b.
Claim: g1 = g2 and r; = ro.
a=qib+r
—a=qab+ry
Oz(ql—I]Q)b+7’1—7’2
To—11 = (41 — q2)b

Thus, —b < ro —r; < b. Therefore —b < (g1 — g2)b < b, then —1 < g1 — g2 < 1. Since 41, g2 € Z, and the only
integer that is greater than -1 and less than 1 is 0, then q; — g2 = 0. Therefore g; = g2. Then

0=(q1—q2)b+7r1—19
0:(0)b+1’1—1’2

0= ry —ro.
Thus r| = 7s. |

This proposition demonstrates that q and r are unique, and this is really important to show in math when
we are proving an algorithm. Regardless of what q and r are, if they exist, then they are unique, sounding trivial
but as we see the proof is rather... less trivial. This one is a bit more straightforward therefore there won’t be
a conceptualizing analysis on this proof. This is also just further building the proof techniques we have at our
arsenal and allowing one to understand the algorithm through and through.

Definition 2.2.1: Logical Divide

Suppose a,b € Z.. Let us define the logical divide of b divides a as b | a.
If 39 € Z in this logic, then a = bq. If b = 0,a # 0, then b 1 a, because 0q = 0, and a # 0.

There isn’t a strict name for this definition as far as I know, therefore I created a name for it. Logical
Divide. It is the logical notation for the phrase ”x divides y”, and it is trivial to Abstract Algebra. It is slightly
different than say previous computationally algebraic courses, where one just computes some division and may
even end up with a completed or incomplete (rational or not) answer. Note that up to now we are only sticking
with the integers, and this is a really important fact to keep in mind. Therefore when we say that 2—4, then we
really mean that 4 is evenly divisible by 2, but 3 does not divide 4, even if we can write it in terms of a decimal.
Another way we can explain this topic is through the division algorithm. If it doesn’t look similar, we can write
b divides a as, a = bq + r, where r = 0. Now does this mean that if a = 0, does 0—0? Honestly, it’s a debated
topic in algebra and number theory, some may state yes, others may state no. But what’s important, is that the
majority say no, the same reason why your calculator cannot divide 0 from O.

Now if a = 0 and b—a, there is an integer q in Z, such that a = bq and q is unique. This is proof we will not get
into it for the sake of saving time and space, but it is a nice practice exercise.
One proof we will be looking at is:



Lemma 2.2.1
Assume b | a,b #0, so a =bq for g € Z, then b | a.

Proof: a = (-b)(—q), so =b | a, for g € Z. Similarly b | —a. [

This is just a fun fact to rationalize that these four results are possible: b—a, b—-a, -b—a, -b—a. Now
on a larger note, we must prove transitivity through logical divides.

Lemma 2.2.2
Suppose a,b,c € Z. If ¢ | b and b | aj then ¢ | a.

Proof: 3q1,92 € Z, such that a = bg; and b = c¢q2. So a = (cq2)q1 = ¢(g291)- So ¢ | a. [ |

One thing to note is that divisibility is anti-reflexive, which means if b—a and a do not equal b or -b, then
a does not divide b. There is a statement that could be said about linear combinations of a and b. If there is an
integer ¢ that divides both a and b, then there exists integers x and y, such that c—=xa-+yb. Therefore, ¢ divides
any linear combination of a and b. The proof of this is similar to the previous proof before. The idea is if you
can write a and b in terms of ¢, then the linear combination could also be written in terms of c. Thus showing
divisibility. Try to implement this on your own. If it hasn’t been noticeable, there is nothing more to learning a
course outside of learning the definitions and theorems.

Definition 2.2.2: Greatest Common Divisor

The GCD of a and b, written as gcd(a,b) = d, and d > 0 such that d | a and d | b and if ¢ | @ and ¢ | b,
then ¢ | d, and ¢ < d.

The greatest common divisor is a concept that we have learned in grade school. If we recall, we can write
the ged(4,6) = 2, since 2—4 and 2—6.

Theorem 2.2.2 Linear Combinations of GCD
Let a,b € Z, not both 0. Let there be set S such that

S={xa+yb:x,yeZ,xa+yb>0
Then S # ¢ and S € Z>°, then by the well-ordering principle, S has the smallest element called d. Then

d = gcd(a,b).
The key statement is if d = gcd(a, b), then 3x,y € Z such that d = xa + yb.

Proof: Let S # ¢. 3d € S such that Vt € S,d < t since d € S. Then 3x, y € Z such that d = xa + yb. Now our
goal is to prove that d | a.

IfdeS, thend >0,s03g,r€eZanda=qd+r when 0 <r <d.

Suppose ¥ > 0, then

r=a-—qd
=a—q(xa+yb)
=a—qxa—qyb

= (1 -gqx)a — (qy)b.

So r is a linear combination of a and b. Since r > 0 and r < d, then r € S, contradicting the assumption that d
is the smallest element of S.

If r =0, then a = qd, therefore d | a.

Similarly we can show d | b.

Now suppose ¢ | @ and ¢ | b, then ¢ | xa +yb, which is a linear combination of a and b, which equals d. Therefore
d is unique.

Suppose f > 0 has the property that if ¢ | a, ¢ | b, then ¢ | t, and ¢ | a, | b, then t | d and d | ¢.

Therefore d = t. [



If the ged of any two integers ever equals 1, then we say that a and b are relatively prime. If they are
relatively prime, then by the previous theorem, the linear combination will also equal 1.

Theorem 2.2.3
Suppose gcd(a,b) =1 and ¢ € Z such that a | bc, then a | c.

Proof: Since the gcd(a,b) =1, then 3x,y € Z such that xa + yb = 1. Therefore,

xa+yb=1
cxa+cyb=c
(cx)a +y(be) =c,
then a | a and a | bc, therefore a | c. [

The last thing we will be looking at in this section is the extended gcd algorithm. The idea behind this is
to use the ged algorithm and then reverse the process in order to find the factors of the linear combination. This
is more of a computational math. The GCD algorithm can be written in terms of the Division Algorithm and
continuing to find the terms that make up the two factors. An idea of this is using the ged(109, 26).

109 = 26(4) + 5
Because 109 can be split up by 26 and have a remainder of 5, this is no different than having a ged of (26,5).
26 =5(5)+1

Now because we are left with a remainder of one, and one can go into any number, then 1 is our final answer for
the ged of (109, 26). This is a way to do the ged algorithm through division. But what if we are to set this the
other way around?

1=26-5(5)

Similar to what we did before, we are shifting all elements in the equation to create the one above.
1 =26-5(109-26(4))

1 = (-5)(109) + (21)(26)

Thus we have found the linear combination factors of the equation.

2.3 Primes

In the realm of mathematics, prime numbers are the true VIPs. The Fundamental Theorem of Arithmetic serves
as a bouncer taking off the cheap costumes that all the composites wear making sure only primes get through.
In this post, we will look at how the FTA classifies numbers and how the primes are the real deal when it comes
to these costumes. I'm excited about this topic because it practically is my field of interest!

Definition 2.3.1: Prime Integer

Let p € Z. p is prime if the only divisors of p are —1,1,—p,p and p # -1,0, 1.

This definition has two criteria, 1) the divisors of p are restricted; 2) p is not equal to restricted values.
We use the term restricted to denote more so a finite set of values, but this sounds like a stronger claim.
(1) By the only divisors of p, we mean that if you are to divide p by any other integer, using the division algorithm,
we will get a remainder. Using the previous content learned, we will learn that the GCD of p and any relatively
prime, or co-prime, is 1.
(2) When we have p not equal to a select few values, then this ensures that the prime number does not contradict
the first criterion. This definition helps identify and distinguish prime numbers from other integers.



Theorem 2.3.1 Euclid's Lemma

Suppose p is prime, and b, c € Z with p|bc, then p|b or p|c. Proof. Suppose p 4 b. We claim that the
ged(p,b) =1

Proof: Suppose d = gcd(p,b). Then d > 0,d|p, d|b, and since p is prime, then d =1 or d = p. But d # p since
p1b,sod=1. Let’s assume that p is prime. Then p would have some divisors d,t € Z, such that p = dt. Then
according to our assumption, if p is prime, then the only divisors are —1, land — p, p. Therefore, when p|d, then
d=-p,pandt=-1,1. Or when p|t, then t = —p, p, and d = —1,1. Thus p is prime. ]

This ”lemma” is something Euclid used to prove something bigger. The name stuck as ”FEuclid’s Lemma”,
however, it is the foundation for fields such as Number Theory. Its more appropriate name is the Fundamental
Property of Prime Numbers. It sounds like a really basic lemma, but it does undermine its true essence. It
shows that prime numbers are the building blocks of all integers and that a number divisible by a prime must be
divisible by that prime individually or by another prime factor.

Theorem 2.3.2 Fundamental Theorem of Arithmetic (FTA)

If n e€Z and n # —1,0, 1, then n can be written uniquely as a product of primes up to order and sign.

In other words, the theorem tells us that every composite number can be broken down into a unique set
of prime factors. These prime factors are the building blocks of all positive integers. The uniqueness of the
factorization means that no matter how you break down a composite number into its prime factors, the set of
primes you obtain will always be the same, even if the order and sign of the primes might differ.

Lemma 2.3.1

Suppose p is prime. a;,4as,4s,...,a, € Z such that plaas...a,. Then p|a; for some i € N.

Proof of Lemma: By induction on i, let n = 1. If p|a;, then play is true. Let n = 2. If p|ajas, then pla; or
plaz is true. Suppose it’s true for given n = k. Now let n = k + 1. If plajas ... araxs1 = p|(a1a2. .. ax)aks+:, then
pl(araz ... ax) or plag+:. By induction, pla; for some i,1 < i < k, or plags:. [

Now note that we haven’t quite proved the Fundamental Theorem of Arithmetic, but something we have
shown is a corollary of Euclid’s Lemma, which relates to FTA a little bit. So let’s go ahead and link these two
out.

Proof of FTA Theorem:

Claim 1. Existence of Factorization:

Suppose n € Z and n # —1,0,1. Then there exists primes p; ...px such that n = p;...py. If n € Z is a negative
integer, then n = —m is a positive integer. If n = py...pk, p prime, then n = (=p1)paps ... pk is also a product
of primes. So € N is true for all € Z.

Proof of Claim 1: Suppose n is not prime, then 3a > 1. Son = ab, given b € Z and b > 1. Now apply strong
induction on a and b.
a=pi...pr, pi pPrime
b=gq1...9s,qi prime
n =ab =piq:...p,qs as a product of primes, i.e. if n = p1...pr = g1...4s, then r = s and after rearranging
ri = —qi,qi, for each i. [ ]

Claim 2. Uniqueness of Factorization:
From existence, we can show uniqueness. By induction on the min{r,s}. Let our base case be k = 1. We can
assume r =1, so p1 = QL...Qk, p; prime, all Qi prime. Sos =1,p; = QL.

Proof of Uniqueness: Assume uniqueness for k, prove for k+1. Supposen =p;...p, =Q1...Qs, min{r,s} =
k +1, as we can assume that ¥ = k+1. Then p;...pxpr+1 = Q1...Qs. So p1Q1...Qs, assume p; = Q1. So p; =
—Q1, Q1. Then let’s replace this singular prime, p; ... prs1 = (p1)Q2...Qs. Then p1(pa - .. pr+1) = p1(Q2...Qs).
By cancellation law, then we can cross out the p;’s. Then the minimum number of terms is k. By the induction



hypothesis, s = k + 1, and after rearranging Qi = p; all i > 1. So uniqueness is trying for k + 1. So true for all
k e N. .

The uniqueness of the factorization means that no matter how you break down a composite number into
its prime factors, the set of primes you obtain will always be the same, even if the order of the primes might
differ. For example, consider the number 60. The Fundamental Theorem of Arithmetic tells us that 60 can be
expressed as a product of prime factors uniquely:

60=2%223%5

This factorization is unique for the number 60. You can change the order of the factors, but the set of primes (2,
3, and 5) will remain the same.

The Fundamental Theorem of Arithmetic tells us that every positive integer greater than 1 can be expressed
uniquely as a product of prime factors. This unique factorization into prime numbers underpins countless math-
ematical discoveries, making it a cornerstone of number theory and algebra.

2.4 Exercises

Example 2.4.1 (Exercise 1)
Let a be any integer and let b and ¢ be positive integers. Suppose that when a is divided by b, the quotient

is g and the remainder is r, so that if ac is divided by bc, show that the quotient is 4 and the remainder
is rc.

Example 2.4.2 (Exercise 2)

Let a,b, c,q be as in the previous exercise. Suppose that when g is divided by c the quotient is k. Prove
that when a is divided by bc, then the quotient is also k.

Example 2.4.3 (Exercise 3)
Let n be a positive integer. Prove that a and c leave the same remainder when divided by n if and only
if a — ¢ = nk for some integer k.

Example 2.4.4 (Exercise 4)
Prove that b|a if and only if (=b)|a.

Example 2.4.5 (Exercise 5)
If a|b and b|c, prove then a|c.

Example 2.4.6 (Exercise 6)
If a|b and a|c, prove that a|(b + c).

Example 2.4.7 (Exercise 7)
If a|b and a|c, prove that a|(br + ct) for any r,t € Z

Example 2.4.8 (Exercise 8)

Given a,b are non-zero. Suppose a|b and b|a, then prove that a = +b.



Example 2.4.9 (Exercise 9)
If a|b and c|d, then ac|bd.

Example 2.4.10 (Exercise 10)
If a <0, find gcd(a,0).

Example 2.4.11 (Exercise 11)
Prove that gcd(n,n + 1) = 1 for every integer n.

Example 2.4.12 (Exercise 12)
If a|c and b|c, must ab|c?

Example 2.4.13 (Exercise 13)
Given n € Z, what are the possible values of gcd(n, n + 2).

Example 2.4.14 (Exercise 14)
If gcd(a,b) = d, prove that gcd(g, %) =1.

Example 2.4.15 (Exercise 15)
Suppose gcd(a,b) = 1. If a|c and b|c, then prove that ab|c.

Example 2.4.16 (Exercise 16)
If gcd(a,c) =1 and gcd(b, c) = 1, prove that gcd(ab,c) = 1.

Example 2.4.17 (Exercise 17)
If alc and b|c and gcd(a, b) = d, prove that ab|cd.

Example 2.4.18 (Exercise 18)

If a >0 and b > 0, prove that Icm[a,b] = gw‘;fl;b).

Example 2.4.19 (Exercise 19)
Verify that 2° — 1 and 27 — 1 are prime.

Example 2.4.20 (Exercise 20)
If p > 5 is prime and p is divided by 10, show that the remainder is 1, 3,7, or 9.

Example 2.4.21 (Exercise 21)

Let p be an integer other than 0, +1 Prove that p is prime if and only if for each a € Z either (a,p) =1 or
pla.



Example 2.4.22 (Exercise 22)

Let p be an integer other than 0, +1 with this property: Whenever b and ¢ are integers such that p | bc,

then p | b or p | c. Prove that p is prime.

Example 2.4.23 (Exercise 23)

Ifa =
ri,s; = 0, then prove that

ged(a,b) = py'py?...p,, where for each i, n; = min{r;,s;}.

Example 2.4.24 (Exercise 24)

If a

= $1.,,52
ri,si = 0, then prove that

lecmla,b] = ptllpgng?’ .. p,t(f, where t; = maximum of r;, s;.

Example 2.4.25 (Exercise 25)
Prove that a | b if and only if a? | b2.

Example 2.4.26 (Exercise 26)

pi'py-..py and b = pi'pit...py, where pi,p,...

pglp?...p? and b = pi'p; ...p,ii, where pi,pa,...

, Pk are distinct positive primes and each

, Pk are distinct positive primes and each

Let p be prime and 1 < k < p. Prove that p divides the binomial coefficient (i)



Chapter 3

Congruence Classes in Z

3.1 Congruences

When we talk about congruence classes mod n, we're essentially grouping integers based on the remainder they
leave when divided by n. This creates a classification system, where numbers that share the same remainder
form a class. It’s like organizing a grand masquerade ball, where every guest wears a mask that matches their
remainder modulo n, allowing them to join a specific group similar to classes/grades in school.

Definition 3.1.1: Congruence

Suppose n € N. If a,b € Z, we define a =b mod n as a congruence. We say ”a is congruent to b modulo
n” if and only if n|(b — a).

Lemma 3.1.1

a =b mod n then nla — b if and only if there exists g € Z such that b = gn + a. Prove this exercise on
your own.

Definition 3.1.2: Equivalence Relation

Given S is a set and ~ is a relation on S. ~ is an equivalence relation if for all a,b,c € S

1. a ~ a (reflexive);
2. If a ~ b, then b ~ a (symmetric);

3. If a ~band b ~ c, then a ~ ¢ (transitive).

We will learn and find uses for the equivalence relation, but to connect it to the topics at hand, a = b is
an equivalence relation that envelopes congruences and what we will learn about congruence classes. Essentially,
a = b is the same as a ~ b.

Lemma 3.1.2

Congruence mod n is an equivalence relation.

Proof: Case 1.

Let a€Z,a=a mod n, because a —a = 0 and n|0.

Case 2.

Suppose @ = b mod n then n|a—b and due to properties of the logical divide, n|b—a. Thus b =a mod n. Case
3.

Suppose a,b,c € Z,a=b modn and b =c¢ mod n, son|b—a and n|c-b, so n|(a—-b)+(b—-c) =nla—c. Thus
a=c mod n. [ |



Definition 3.1.3: Equivalence Classes

Suppose ~ is an equivalence relation on S if a € S. The equivalence class of ais [a] :={b € S :b ~ a.

Let’s consider an equivalence relation ~ on the set of integers Z., where a ~ b if and only if 2 =b mod 5

(congruence modulo 5). In this case:
[2]s={...,853,2,7,12,...}

This is the equivalence class of 2, consisting of all integers that are congruent to 2 modulo 5. Equivalence classes
provide a systematic way of grouping elements in a set based on their relationships under an equivalence relation.

Definition 3.1.4: Congruence Classes

For a congruence mod n, if a € Z, [a] :={b€Z :b=a mod n}.

Congruence classes provide a systematic way of grouping integers based on their remainders when divided
by n under a congruence relation. They are essential in modular arithmetic, number theory, and algebraic struc-
tures, contributing to a deeper understanding of mathematical relationships and structures. Two equivalence
classes are the same if they include each other, for example, if [a] = [b], then a € [b] and b € [a]. The set S is
the distinct union of its distinct equivalence classes. l.e. every element of S is in some equivalence class.

Proposition 3.1.1
If a,b € S, then either [a] = [b] or [a] N[b] = ¢.

Proposition 3.1.2
[a] =[b] & a=b mod n.

Proof.: (= ). [a]:={x:x=a modn}. soa € [a] sincea=a modn. Soa e [b],[b]:={xe€Z:x=b
mod n},s0 a =b mod n.

(&). Case 1. [a] C [b].

Let ¢ € [a], then ¢ =a mod n. By transitivity, c =b mod n so ¢ € [b] so [a] C [b].

Similarly, we can show [b] C [a]. Thus [a] = [b]. [

This relationship provides a clear connection between the equality of equivalence classes and the congruence
of integers modulo n.

Proof of Proposition 3.0.1: We need to prove if [a] [b] # ¢ then [a] = [b]. Let ¢ € [a]N[b], then c = a
mod #n,¢ =b mod n. So by the previous proposition, [c] = [a] = [b], so [a] = [b]. [

Proposition 3.1.3

Fix n > 2. The distinct congruence classes modulo n are [0],[1],...,[n—1]. In fact, if a € Z, then [a] = [r]
where r is the remainder when a is divided by r.

Proof: Tfa=qn+r,0<r<n-1,thena=r modn so [a] =[r]. By the division algorithm, [a] must be one
of these classes. By uniqueness, these classes are unique. [ |



3.2 Modular Arithmetic

Definition 3.2.1: Modular Arithmetic )

Fix n € Z>2. Define addition and multiplication on congruence classes mod n.

[a] +[b] = [a + b]
[a] - [b] = [ab]

Given this definition, it seems a little ambiguous if you really sit down and analyze it but we come to learn
that this gives us properties to also allow this arithmetic to be well-defined. This definition shows that it is closed
under addition but also multiplication and I will leave that up to the reader to figure out how to find such values.

Theorem 3.2.1
Ifa,b,c,de€Z,thena+b=c+d modn and ab = cd mod n.

Proof: Given n|c—a, n|d—b, then n|(c —d)—(a+b), so n|(c—a)+ (d—>b). Thus n|c —a,n|d —b,n|d(c —a)+
a(d —b),n|cd —ab + cd — ab, therefore n|cd — ab. [

Theorem 3.2.2 Well-Defined Modular Arithmetic

Modular arithmetic is well-defined.

Proof: Suppose [a] = [c] and [b] = [d]. Then by the previous theorem, [a + b] = [¢ + d] and [ab] = [cd]. [

Definition 3.2.2: Z,

The set of congruence classes mod n with addition is defined by:

+10] 1] 2] 3
0[O0 1 3
1112 1] 3|10
2123 |10 11
31310 |11 ]| 12
01|23
0[0|0]0]O
110|123
2101210712
3101321
Commutative, associative, and distributive hold for Z.,.

The additive identity is [0] + [a] = [a].
The multiplicative identity is [1a] = [a].

Z, = {la]:aez}={0],[1],...,[n-1]}.

Axiom 3.2.1 Additive inverses in Z,,

Every element in Z, has an additive inverse.

[a] +[-a]l =0




3.3 Units and Divisors

Definition 3.3.1: Units in Congruence Classes

[a] is a unit if [a] has a multiplicative inverse.

Theorem 3.3.1
[2] is a unit if and only if gcd(a, n) = 1.

Proposition 3.3.1

All classes in Zp are units.

Proof of Proposition 3.2.1: Suppose [a] € Z, is a unit so Ix € Z such that [xa] = 1. Then

xa=1 modp & xa=1+gqp
— xa—-qp=1
— gcd(a,p)=1

Easy to show the opposite by showing a multiplicative inverse in the Z,. So [a] has a multiplicative inverse.
This proposition, using n # p will show it is true for the Theorem 3.2.3.
To show that [a] is a unit in Zss and find [a]™! in Zs2. Let a = 4 and find an x € Z such that x4 + g32 = 1, and
use the Extended Euclidean Algorithm to find this inverse. We find that x = —7, which means [x] = [-7] = [25].

Definition 3.3.2: Zero-Divisors

[4] is a zero-divisor in Z, if 3[x] # [0], with [ax] = [0].

Theorem 3.3.2
[a] is a zero-divisor in Z, if and only if the gcd(a, n) # 1.

Proof: Let’s prove the contrapositive. Suppose gcd(a, n) = 1, then [a] is not a zero-divisor. Assume gcd(a,n) =
1. Suppose b € Z with [ab] = [0]. [a] is not a zero-divisor if and only iff [ab] = [0] implies [b] = [0]. By
Theorem 3.2.3, [a] is a unit in Z,, so there exists x € Z, such that [xa] = 1. So [x]([ab]) = [x0] = [0] or
[xa][b] = [1][b] = [b] = [0]. Conversely, suppose gcd(a,n) =d > 1. [

For example, if we take Z;o, then since gcd(4,12) = 4, then [4] is a zero-divisor.

3.4 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 4
Rings

Around this chapter is where most textbooks will start. Some of the concepts that we introduced in the previous
chapters are more seen as prior knowledge, or seen in an introduction chapter similar to what we have with
Chapter 1. So from here on out, consider everything you learned so far as a foundation for the rest of the content.

4.1 Rings

Definition 4.1.1: Ring

A set with +, X, called R. Addition has the properties of being commutative and associative. Multiplication
is at minimum associative, and together distributive. There is an additive identity, usually denoted by Og.
But there is also a multiplicative identity, denoted by 1g. There exists an additive inverse in R, b, such
that a + b = 0, and are unique.

Definition 4.1.2: Subrings

S is a subring of R if for all a,b € S, has closure under addition and multiplication. It must also have the
additive identity and additive inverses per each element.

For example, in an introduction to proofs class we may have seen that
ZCQCQcCRCcC.

We learned them assets, but looking at properties of rings and subrings, consider them all rings and subrings of
the order. However, if we wanted to look outside of these number systems, let’s look at matrices:

[ e

Note that this is a subring of Mato(IR).

Definition 4.1.3: Field

A commutative ring, F, 1 € F. if a € F, such that a is a unit. FF is called a field.

Definition 4.1.4: Subfield

If S is a subring of field IF, and also closed under multiplicative inverses, then it is also a subfield.

(e

is a subring of Mats(IR). But I also claim it is a field itself.
25

r
\

We have previously learned that



Proof of Claim: Suppose MatQ(O) ¢ M = [—ab Z:|, which means a and b not both 0.
det M = a® +b*

Let M~! = ﬁ [_ab a]' Thus we have shown that the subring also is closed under multiplicative inverses. This

is a field. [ ]

Lemma 4.1.1

For n composite, Z, is not a field if it has zero-divisors.

From now on R, S is a ring and FF is a field.

Definition 4.1.5: Integral Domain

Suppose n is a commutative ring with 1 € R. We say R is an integral domain if 4 # 0 and a € R and a is
not a zero-divisor.

We can think of these integral domain rings as being almost a field but the only thing discerning them
from being a field is the fact the only zero-divisor is Og € R. Remember that if there is 0 € R then it is no way
it can be a field, since all fields have 0 ¢ IF, since all elements must have an inverse a.k.a a unit.

Corollary 4.1.1

F is an integral domain.

Proof: Suppose a,b € F with ab = 0. Suppose a # 0, then 4 is a unit with inverse a='. then

al(ab)=a1-0=0

=0
(ata)b=1b=0
|
Let’s look into something called extensions.
Definition 4.1.6: Field Adjoins ]

We call something an adjoin given that suppose we have IF = Q. Note this field is a subfield of R. Then
an extension of Q is taking an element of R \ Q, and adding it to Q. An example of this is,

Q[V7]:={a+bV7:a,bcQ}

In fact an exercise to do is to show that Q[\ﬁ] is a subfield. Based on everything we have observed, we
can say that Z, is a field and Z, is not even an integral domain.

Axiom 4.1.1 Pigeonhole Principle

If you have n + 1 objects in n slots, one slot will have more than 1 element.

Theorem 4.1.1

Finite integral domain is a field.




Proof: Let F be a finite integral domain. We need to show that if 0 # u € F, then u has a multiplicative inverse.
Consider the set {u, u2,u?,...}. Suppose F has n elements, then there must be repetition. So uf = u™ for m > k.

u™ —uk =0

k™  -1)=0

Since F is an integral domain, then u* = 0 or u” % —1 = 0. Since u # 0, the u* # 0. Then

umk_1=0
un’I*k — 1
u(u™* 1y =1
u—l — um—k—l
Thus F is a field. u

4.2 Homomorphisms and Isomorphisms

Definition 4.2.1: Homomorphism

Let R and S be rings. Suppose a function f : R + si, with given that a,b € R, f(a +b) = f(a) + f(D)
and f(ab) = £(a)f (b).

Definition 4.2.2: Isomorphism )

Suppose f is a bijective homomorphism, then f is an isomorphism.

If f is an isomorphism, then R and S are isomorphic to each other. Suppose R = Z and S = 2Z and let
f : R+ 8 defined by f(m) =2m. Is an isomorphism?

Disproof:
f(m+n)=2(m+n)=2n+2m

flmn) = 2mn % f(m)f(n)

Not isomorphic. ]

Definition 4.2.3: Endomorphism

A homomorphism that maps R to itself is called an endomorphism.

Definition 4.2.4: Automorphism

An isomorphic endomorphism is called an automorphism.

Proposition 4.2.1

A bijection exists if and only if it has an inverse.

Proof: Let g:8 +— R, thus fog is the identity of S. And gof is the identity of R. Define g(a+bi) = [_ab Z]

Let f( _ab Z ) = a + bi. This is closed under addition and multiplication. It also has an inverse due to the

determinate law for inverses. [ ]



Axiom 4.2.1 Isomorphism Properties

We can check the properties of a homomorphism to check if it is isomorphic.
1. # of elements in R = S
2. # of units in R = S (Check how many coprimes in both sets)

3. # of 0-divisors for both are the same.

For example, we can state that Z # Q. The reason is that every element in Q is a unit as the only unit in
7. is 1. Similarly, Z4 # Zg, due to the number of elements.
Perhaps in previous courses, such as Calculus III, you have looked at R?, which means a 3-tuple ordered pair
that represents (x,y,z) in a space. However, this is a generalized fact. What if I wanted to have two points from
different sets, but still create an ordered pair or tuple?

Axiom 4.2.2 Cartesian Product
If Rand S are rings, then R X S := {(r,s) : r € R,s € S} is also a ring under addition and multiplication.

(7’1,51) + (7"2,52) S (7’1 + 19,51 + 52)

(r1,s1)(r2, 52) = (r172, 5152).
It will be a fun exercise to prove the following lemma or at least a couple of examples.

Lemma 4.2.1
If the gcd(m, n) = 1, then Zyy X Zy = Zyy.

Note that in Z X Z, the zero-divisors are (0, 1), (1, 0).
Let R=8=ZinZXZ. Let n:Z XZ + Z. Then we have that nt[(1,0)] = 1, which is a unit. So a homomor-
phism need not preserve zero-divisors.

4.3 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 5

Polynomials

5.1 Polynomials

Definition 5.1.1: Polynomial

A polynomial with coefficients in a R is denoted by R[x], which is an extension field of x expanding the
set to include

Ao + a1x + asx + ...+ ayx”.

We can think of a,, as coefficients.

Proposition 5.1.1

We do addition and multiplication component-wise, which means given an i large enough, a will eventually
be 0. To understand what I mean, let

fx)=ag+...+a,x"
g(x)=bo+...+byx™,

given that m > n. Therefore

fx) + g(x)

This informal definition raises several questions: What is x? Is it an element of R? If not, what does
it mean to multiply x by a ring element? To answer these questions, note that an expression of the form
ag + a1x + asx? + ... + a,x" makes sense, provided that the a; and x are all elements of some larger ring.
An analogy might be helpful here. The number 7 is not in the ring of integers (Z), but expressions such as
3—4n+12n% + 7% and 8 — % + 67° make sense in the real numbers (R). Furthermore, it is not difficult to verify
that the set of all numbers of the form 7, a;7', with n > 0 and a; € Z, is a subring of R that contains both
Z. and 7t. For the present, we shall think of polynomials with coefficients in a ring R in much the same way, as
elements of a larger ring that contains both R and a special element x that is not in R. This is analogous to the
situation in the preceding paragraph with R in place of Z and x in place of 7t, except that here we don’t know
anything about the element x or even if such a larger ring exists.

Feel free to check if R[x] is a ring, but we will be concentrating on Z[x], Q[x]R[x], C[x], Z,[x], and have their
elements denoted by f(x) or P(x).

Definition 5.1.2: Degree of a Polynomial

If f(x) € R[x], the degree of f(x), denoted by deg f(x), is the largest n for which the coefficient of x” is
not 0. a, is also called the leading term.
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Definition 5.1.3: Additive Identity of R[x]

a, is 0.

If the deg f(x) = 0, then the degree is undefined, which means the leading term is undefined.
Proposition 5.1.2 Degree Arithmetic
Suppose deg f(x) = m,deg g(x) = n,
deg f(x) + g(x) < max{deg f(x), deg g(x)}

ifm+#n

deg f(x) + deg g(x) = max{m, n}
ifm=n

deg f(x) + deg g(x) < max{m, n}

If f(x)g(x) =apbo + ...+ apbyx"*™, so deg f(x)g(x) < deg f(x) + deg g(x).
However, if R is an integral domain, then

deg f(x)g(x) = deg f(x) + deg g(x)

Let f(x), g(x) € Zy[x], f(x) =2x, g(x) = 2x?, then f(x)g(x) = 4x> = 0.

From now on R is an Integral Domain.

Given that R is an integral domain, one may naturally ask, what are the units of R?

Lemma 5.1.1
Suppose u(x) is a unit with a multiplicative inverse v(x). Then

u(x)o(x)=1=1+0x+0x%+...

5.2 Division

Theorem 5.2.1 Division Algorithm in Polynomial Fields
Suppose F is a field and a(x), b(x) € F[x], b(x) # 0. Then there exists a unique r(x) € IF[x] with

a(x) = q(x)b(x) + r(x)

with deg(r(x)) > deg(b(x)) or r(x) = 0.

Proof: Case 1: If a(x) = 0 or deg(a(x)) < deg(b(x)), then g(x) = 0 and r(x) = a(x) because a(x) = b(x)0 + a(x).
Case 2: If a(x) # 0 and deg(a(x)) > deg(b(x)), and a(x)/b(x) = h(x), then deg(h(x)) < deg(a(x)). If deg(a(x)) = 0,
then a(x) = a, a constant in IF. deg(b(x)) < deg(a(x)) implies b(x) equals a constant.

a(x) = b(x)(b(x)"ta(x)) + 0

q(x) = b(x)"a(x)
r(x0 = 0.

Assume the division is using strong induction. For all polynomials of deg(a(x)) < deg(b(x)) assume b(x), a(x).
Then a(x) = a,x""b(x) + h(x) such that deg(h(x)) < deg(a(x)). h(x) = g1(x)b(x) + r(x) such that deg(r(x)) <



deg(b(x)) or r(x) = 0.
Proof of Uniqueness: Suppose

a(x) = q1(x)b(x) + 71(x)
= 42(x)b(x) + 7(x)

where deg(r1(x)), deg(r2(x)) < deg(b(x)) or r1(x), r2(x) = 0. So

[91(x) = g2(x)]b(x) + [r1(x) = r2(x)] = 0
[91(x) = g2(x)]b(x) = [r2(x) = r1(x)].

So either r5(x) = r1(x) = 0 or deg(ra(x) — r1(x)) < deg(r1(x)) < deg(ra(x)).

In any case deg(r2(x) —r1(x)) < deg(b(x)) or ro(x) = r1(x) = 0. Let’s state a(x) # 0. Then a(x)b(x) = a,by,x"*™ +
...agbg, and a,b,, # 0.

Suppose (41(x) — 42(x))b(x) # 0. Then deg((q1(x) — g2(x))b(x)) = deg(q1(x)q2(x)) + deg(b(x)) > deg(b(x)).
Conclusion: (g1(x) — g2(x))b(x) = 0 thus g1(x) = g2(x). And since r2(x) — r1(x) = 0, then ra(x) = r1(x). [

The Division Algorithm for polynomial fields is a fundamental concept that allows you to divide one
polynomial by another, similar to the division algorithm with integers. This algorithm helps you express one
polynomial as a quotient of another polynomial plus a remainder.

Definition 5.2.1: Logical Divide of Polynomial Fields

Let a(x),b(x) € F and b(x) # 0. We say b(x)|a(x) if there exists a g(x) € F such that a(x) = q(x)b(x).

Definition 5.2.2: GCD of Polynomial Fields

Suppose a(x), b(x) € F[x] not both 0. d(x) = gcd(a(x), b(x)) means d(x)a(x), d(x)b(x), and if there exists
a c(x) € Fx] with c(x)a(x), c(x)b(x), then c(x)d(x) so deg(c(x)) < deg(d(x)).

Suppose we are in Q[x]. Let
a(x) = (x = 1)°
and
b(x)=(x—1)(x —2).

Then the gcd(a(x), b(x)) = x — 1. But wait, doesn’t 2x — 2|a(x) and b(x).
We have a problem on our hands... We have to figure out how to circumvent this solution and before we can do
that, let’s go ahead and introduce a new term.

Definition 5.2.3: Monic

If d(x) € F[x] has a leading coefficient of 1, then d(x) is monic.

In algebra, monic polynomials are commonly used in the context of irreducible polynomials (polynomials
that cannot be factored further). Monic irreducible polynomials have a leading coefficient of 1, and this condition
simplifies discussions of unique factorization.

Definition 5.2.4: Polynomial Associates

If c(x),d(x) € F[x] and c(x) = Bd(x) and B € F and B # 0, we say c(x) and d(x) are associates.

We can think of associates as polynomial constant multiples.

Theorem 5.2.2 GCD Theorem
Suppose a(x), b(x) € F[x] not both 0. Let

S :={u(x)a(x) + v(x)b(x) # 0 : u(x),v(x) € F[x]}




, then there exists u(x), v(x) € F[x], such that d(x) = u(x)a(x) + v(x)b(x) and d(x) = gcd(a(x), b(x)). S
has a unique monic polynomial of the smallest degree which is the gcd(a(x), b(x)).

This theorem also answers the question to our ged question, which shows that we want to have a monic
polynomial of smallest degree as our gcd(a(x), b(x)). The set of degrees is a subset of Z*, and let d(x) be a monic
polynomial of minimal degree in S, so the theorem exists. The GCD (Greatest Common Divisor) Theorem for
Polynomial Fields is a fundamental result in abstract algebra that addresses the existence and uniqueness of the
greatest common divisor of two polynomials in a polynomial ring over a field. The theorem establishes a clear
and precise method for finding the GCD of polynomials and its properties.

Proof: Let d(x) be a monic polynomial such that d(x) € S. If ¢(x) is any polynomial in S, then deg(d(x)) <
deg(c(x)). We need to show that d(x)|a(x).

Let’s use the division algorithm. Suppose d(x) # 0. We write a(x) = g(x)d(x) + r(x), so r(x) = 0. We show
this by saying r(x) is a non-zero and r(x) € S and r(x) = a(x) — g(x)d(x) where d(x) = a(x)u(x) + b(x)v(x) such
that
r(x) = a(x) — q(x)(ax)u(x) + b(x)ov(x))
= 1 - g(u()a(x) - g(x)o(x)b(E)S.

Contradicting d(x) as being a polynomial with the least degree. We conclude r(x) = 0, so d(x)|a(x). Similarly
d(x)|b(x). Suppose c(x)|a(x), c(x)b(x), then c(x)|u(x)a(x) + v(x)b(x) = d(x). [

Definition 5.2.5: Relatively Prime

a(x),b(x) € F, not both 0. a(x) and b(x) are relatively prime if gcd(a(x), b(x)) = 1.

Corollary 5.2.1 Consequence of GCD Theorem
Suppose a(x), b(x) € F are relatively prime and c(x) € F. If a(x)|b(x)c(x), then a(x)|c(x).

Proof: By the ged theorem, we have 1 = u(x)a(x) + v(x)b(x), so c(x) = c(x)u(x)a(x) + c(x)v(x)b(x). Since
a(x)|c(x)u(x)a(x) and a(x)|c(x)v(x)b(x), then a(x)|c(x). [

If we let R = F[x], we notice that it has very similar properties to Z, such that it has the division and gcd
algorithm. In fact, it also will have relatively prime and an equivalence to primes but for polynomials. Let’s look
at this equivalence.

Definition 5.2.6: Irreducible

A polynomial p(x) € F[x] is irreducible if p(x) = a(x)b(x) for a(x), b(x) € F[x] then a(x) is an associate of
p(x) or a(x) is a unit.

5.3 Irreducibility

Proposition 5.3.1 Polynomial Euclid’'s Lemma
Suppose p(x) € F[x] which is irreducible and b(x) € F[x] such that p(x) 1 b(x), then gcd(p(x), b(x)) = 1.

Proof: Let d(x) = gcd(p(x), b(x)). d(x)|p(x),d(x)|b(x), and since p(x) is irreducible, then d(x) is monic, d(x) =
1, d = cp(x) given that ¢ € IF.
If d(x) = cp(x) and d(x)|b(x), then p(x)|b(x), a contradiction arose. Therefore p(x)|b(x) or p(x)|c(x). [

Corollary 5.3.1
If p(x)|ai(x)...an(x), given a;(x) € F[x], p(x) is irreducible, then p(x)|a;(x) for some i. Then show the



answer by induction on n.

Theorem 5.3.1

Suppose you have any polynomial a(x) € IF[x], then a(x) has a factorization into irreducible polynomials.
This factorization is unique up to order and associates.

Proof: Use strong induction on degree of a(x).
Uniqueness. If

a(x) = pi(x)...pr(x)
=q1(x)...g5(x),
where p;(x), gi(x) are irreducible. Then let r = s and after rearranging g;(x), pi(x) is an associate of q;(x) each.

Proof of Uniqueness. p1(x)|q1(x)...qs(x), pi(x)|qi(x) for some i. Without loss of generality, since g1(x) is
irreducible, then p1(x), g1(x) are associates. Proceed to show this by induction on min{r, s}. [

Lemma 5.3.1 Irreducible degrees

Degree 1 polynomials are irreducible.
If a degree 2 polynomial is reducible, then it is made of linear polynomials.

Lemma 5.3.2 Freshman’s Dream
In Zo, (x +1)% = x2 + 1.

Proposition 5.3.2

If f(x) is irreducible F[x], so are all associates f(x)

Take note of that for the equation x? + ax + b, there are 3 choices for each a, b which means 9 total choices
for this polynomial. The number of monic polynomials of deg#n in Z,[x] is p". Total number of polynomials of

degn is (p — 1)p".
Example 5.3.1
Prove that x2 + 2 is irreducible in Q[x].
Proof:
x> -2=(x-V2)(x+V2) eR

This factorization is unique. Since factorization Q[x] is also unique if x? — 2 had a factorization by linear. It
would have include (x — V2)(x + V2), but V2 ¢ Q. [

Let F be a field. Take f(x) € F[x], there is a corresponding polynomial function, IF — F denoted by f(x).
Theorem 5.3.2 Factor Theorem

Let f(x) € F[x] and a € Fif f(a) = 0, then (x—a) is a factor of the polynomial f(x). i.e. f(x) = g(x)(x—a).

Example 5.3.2
(a). Show that x? + 2 is irreducible in Zs[x].



Proof of Example 5.2.2: We will do a proof by contradiction. Suppose x2 + 2 is not irreducible. Then x2 + 2
is made up of linear polynomials such that (x +a)(x +b) = x2+2. But note that (x +a)(x +b) = x> +xa +xb +ab,
and we don’t have a degree 1 in our polynomial. Therefore, a = —b, thus (x + a)(x — a) will result in x2 + a2, but
note that a2 = 2 or a2 = 3, and @ = +V2 or a = +V3, but V2, V3 ¢ Zs. Therefore, this polynomial, x2 + 2 is
irreducible. | [

(b). Factor x* —4 as a product of irreducibles in Zs[x].
(x* +2)(x* - 2)
However, (x2 — 2) is not further reducible, since we will deal with an irrational V2, which is not in Zs.

Theorem 5.3.3 Remainder Theorem
Let f(x) € F[x],a € F[x]. Then f(x) = g(x)(x —a)+r(x), given there exists g(x) € F[x]. r(x) is a constant.

Proof of Remainder Theorem: By division algorithm, f(x) = g(x)(x—a)+r(x) where r(x) = 0 or deg(r(x)) <
deg(x —a) or r(x) = 0.
If deg(r(x)) < deg(x — 1), then deg(r(x)) < 1 implying that deg(r(x)) = 0. So r(x) is some constant or 0. [

Proof of Factor Theorem: We know by remainder theorem f(x) = g(x)(x —a)+r(x) where r(x) is a constant,
indexed function and by the previous example we now have that

fla) = g(x)(a—a) +r(x)

= r(x).
So f(x) = g(x)(x —a). [

Definition 5.3.1: Roots

a is a root of f(x) if f(a) =0.

Corollary 5.3.2 of Factor Theorem
Suppose f(x) € F[x] has deg f(x) = n, then f(x) has at most n different roots.

Proof: By induction on deg f(x); Suppose deg f(x) = 0, f is a non-zero constant with no roots.

deg f(x) = 1, then f(x) = a;x + a2, a # 0. Only one root at x = _u—”f Assume true for polynomials of
deg f(x) =n—1. If b # a, then b is a root of f(x). 0 = f(b) = (b —a)gb), b —a #0 = g(b) = 0. By the
induction hypothesis, there exists at most # —1 such b. So the number of roots of f(x) is at most 1+(n—1) = n.
|

If f(x) € Q[x], then the rational root test tells us if f(x) has a linear factor.

Definition 5.3.2: Rational Root Test

If rlag and s|a, and gcd(r,s) = 1 then  is a possible root given that f(f) = 0. Since a¢ and a, have

finitely many factors, then there are only finitely many factors to check.

For example, 2x3 — x2 +1 is irreducible due to the Rational Root Test, as we find the /s = 1/2,1 and their
additive inverses. After checking all possibilities plugged into f(x), we see none of them are 0.
Suppose f(x) € Z[x] and g(x), h(x) € Q[x] then o, € Q such that

fx) = (ag(x))(Bh(x)) € Z[x].

Suppose also that if f(x) € Q[x], f(x) is only irreducible if and only if there is a ¢ € Q such that ¢f(x) can let
us assume that cf(x) € Z[x]. The rational root test tells us if they are linear which suffices to show there is
irreducibility for degrees 2 and 3 but not higher. This builds the foundation for the following theorem.



Theorem 5.3.4 Gauss's Lemma of Irreducibility
Suppose f(x) € Z[x], if f(x) is irreducible in Z[x], then f(x) is irreducible in Q[x].

One may ask, is the converse possible given these assumptions? I claim not always.
It is possible when given that g(x)h(x) € Q[x], and the deg g(x), h(x) < deg f(x), therefore f(x) is irreducible in
Q[x]. But what if we considered that f(x) cannot even be written as a product of integer coefficients? This is a
more simplified version of Gauss’s lemma, but the actual lemma looks into something called primitivity, which is
not looked into in this course.

Definition 5.3.3: Primitivity

p(x) has integer coefficients and is called primitive if and only if the ged of all the coefficients is 1.

If this is also true, then and only then will it be a bi-conditional statement.
This was a whole block of assumptions to unfold before displaying the if-then statement of (our) Gauss’s lemma
of irreducibility. But let’s look at an example of how to apply this. Let f(x) € Q[x], f(x) = 6x? — 5x + 1,
therefore it can be reduced into f(x) = (x — %)(Gx — 2), therefore f(%) = 0. Thus we have shown a root in
Q[x] which demonstrates that it is reducible. But we can also write this in the form of integer factors, as
f(x) =(2x —1)(3x — 1) € Z[x] and you can verify this.

Lemma 5.3.3 Introductory Lemma

Suppose f(x), g(x), h(x) € Z[x] where f(x) = g(x)h(x). Let p be prime such that p divides every coefficient
of f(x), then either p divides every coeflicient of g(x) or h(x).

Sketch of Proof: Suppose f(x),g(x), h(x) € Z[x] where f(x) = g(x)h(x). Then ay = boco, therefore plag
which implies p|boco, and due to Euclid’s lemma, then p|bg or p|co. Suppose gcd(p,co) = 1, then and pla; =
boci + bico, then we know p 1 ¢¢ implying p|b;. Let there exist a,f such that ag(x),fh(x) € Z[x], then
aBf(x) = (ag(x))(Bh(x)). By canceling primes, dividing @f, and using the introductory Lemma we get f(x)
being a product of polynomials of integer coefficients. [

Theorem 5.3.5 Eisenstein's Theorem of Irreducibility

Suppose f(x) € Z[x]. Let deg f(x) = n. Suppose p { a, pla; for i < n, p? 1 ap, then f(x) is irreducible in
Qlx].

Proof: Suppose f(x) is reducible in Q[x], then f(x) is reducible in Z[x] by Gauss’s Lemma. So f(x) = g(x)h(x),
g(x), h(x) € Z[x], deg g(x), h(x) < deg f(x) = n. So plag = bocy and so forth following Introductory Lemma. m

Lemma 5.3.4
Linear Polynomials are not reducible

Sketch of Proof: Following Eisenstein’s proof, we find that if linear polynomials are reducible then this con-
tradicts Eisenstein’s. u

Let f(x) = 2x* + 15x3 + 30x2 + 60x — 21. 3 1 2,3|15,30,60,21, but 9 ¥ 21. So f(x) is irreducible by
Eisenstein.

Theorem 5.3.6 Reduction mod P
Let f(x) € Z[x]. Let p 1 a,. Consider f(x) = a,x" + ...+ ay where a; Is congruence class a; mod p. If
f(x) is irreducible in Z,[x] then f(x) is irreducible in Z[x] and Q[x]. The converse is not true.

Let f(x) =x*+3x3+6x2+ 1€ Q[x]. Try p =2, f(x) = x* + x3 + 1 has no factors and roots, so it is not
linear and irreducible.



Proof: Suppose f(x) is irreducible in Q[x], then f(x) = g(x)h(x) € Z[x]. degg(x), h(x) < n. Let f(x) = f(x)
mod p, since p 1 a,, and a, # 0, so deg f(x) = n implying that k,m < n. f(x) is a product of polynomials of
smaller degree which is a contradiction, so f(x) must be irreducible in Q[x]. [

Theorem 5.3.7 Fundamental Theorem of Algebra

If f(x) € C[x], then f(x) is irreducible, if and only if f(x) is linear, if and only if every non-constant of
f(x) € C[x] can be factored as a product of linear factors, if and only if every non-constant f(x) € C[x]
has a root.

For example f(x) = x? + 1 € C[x] has complex roots +i. f(X) = (x +i)(x —i). Let 6 = 2%, 4.

e = cosO +isin6

\3
(eel) = cos 30 + isin 360

= cos 21 + isin 27
= cos4m + isindn
=1

Gi,e29i,

391, .., e(n—l)@z

Roots of x" — 1 are e e

Proposition 5.3.3
Suppose f(x) € R[x], every irreducible f(x) has degree 1 and 2.

Example 5.3.3

Suppose f(x) € R[x] and has degree 3. By IVT, there exists a ¢ € R, f(c) = 0, so by the factor theorem,
(x —¢) is a factor of f(x) € R[x].

Proof Part 1.: Consider f(x) € R[x] as a polynomial of C[x]. By FTA, f(x) has a root in C. If this root is
real, then f(x) has a linear factor. So we can assume that w = a + bi is a root of f(x).
|

Claim. So is w =a —bi: Suppose f(x), a; € R. We assume f(w) = 0. We can suppose ¢ is a homomorphism
of C, which leaves R fixed. i.e. if a € R, ¢p(a) = a, then w and f(w) =0, then f(¢p(w)) = 0.
|

Lemma 5.3.5
Now let ¢(a + bi) = a — bi, therefore ¢ : C +— C, therefore ¢ is a isomorphism.

Proof. ctd: Since complex conjugation is an isomorphism C — C. Therefore f(w) = 0 also. Now suppose
f(w) =0, w ¢ Rand f(@) =0, (x—w), (x—w) are factors of C[x] of f(x). But (x—w), (x—®) = x*—(w+0)x+ 0@,
which (w + @) € R, ww € R. Therefore all factors are in R[x] hence, degree 1 or 2. [

5.4 Congruences

Theorem 5.4.1
Let m(x) € F[x]. If a(x), b(x) € IF[x]. Let’s define a(x) = b(x) mod m(x)

Definition 5.4.1: Congruences

Let m(x) € F[x]. If a(x), b(x) € F[x]. Let’s define a(x) = b(x) mod m(x) if m(x)|a(x) — b(x) if and only if
there exists q(x) € F[x], a(x) — b(x) = g(x)m(x). If and only if a(x) = b(x) + g(x)m(x)




Definition 5.4.2: Congruence Class

Congruence of a(x) € F[x] is denoted by [a(x)]. It consists of

[a(x)] :={b(x) € F[x] : b(x) = a(x) mod m(x)}

Definition 5.4.3: Polynomial Division Algorithm

Suppose g(x) € F[x]. g(x) = g(x)m(x) + r(x), degr(x) < degm(x) or r(x) = 0. If r(x) = g(x) mod m(x),
so g(x) € [r(x)]. So every g(x) is in exactly one of these congruence classes.

Lemma 5.4.1

In Z[x] if deg m(x) = n, there are exactly p” different congruence classes.

Similar to congruence classes in the integers, we also have similar ideas for addition and multiplication for
polynomial congruences.

Definition 5.4.4: Modular Operations

Addition:

[a(x)] + [b(x)] = [a(x) + b(x)]
Multiplication:
[a()][b(x)] = [a(x)b(x)]

We can use this to check if it is well-defined.

Lemma 5.4.2 Well-Defined
Suppose [a(x)] = [c(x)], [b(x)] = [d(x)].
1. [a(x) + b(x)] = [c(x) + d(x)]

2. [a(x)b(x)] = [e(x)d(x)]

5.5 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 6

Ideals and Quotient Rings

6.1 Ideals and Quotient Rings

Definition 6.1.1: Quotient Rings

Congruence classes mod f(x) are noted by F[x]/(f(x)) which is a ring. The additive identity of this ring
is [0] = [f(x)]. This together is called a quotient ring closed under addition.

Theorem 6.1.1 Class of g(x)
[g(x) € F[x] is a unit if and only if gcd(f(x), g(x)) = 1, then g(x), f(x) are relative prime.

Proof: (<=). Suppose gcd(f(x), g(x)) =1, then there exists w(x), v(x) such that w(x)g(x) +v(x)f(x) =1, so

[w(x)g(X)] = [1] so [w(x)] = [g(x)] "
(=). Suppose w(x)g(x) =1 mod f(x), so f(x)|w(x)g(x)—1 therefore there exists a v(x) € F[x].

w(x)g(x) =1 =0(x)f(x)
w(x)g(x) —v(x)f(x) =1,

Therefore, gcd(f(x), g(x)) = 1. [

Corollary 6.1.1
If f(x) is irreducible in F[x], then F[x]/(f(x)) is a field.

Proof: If g(x) € Flx], [g(x)] # [0], f(x) 4 g(X), then gcd(f(x), g(x)) =1, so [g(x)] is a unit in F[x]/(f(x)). m

Let E = F[x]/(f(x)), such that we have an injection from F +— E where a +— [a]. We can consider F now
a subfield of E.

Definition 6.1.2: Roots in Quotient Rings

Suppose F C E, let @ = [x], such that f(x) € E[x], then f(a) = [0].

Axiom 6.1.1
F = E.

Definition 6.1.3: Ideal

Let R be a commutative ring. Given that I C R. We call [ an ideal if an only if I is a subring of R and if
reR,acl, then ra €l.
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Definition 6.1.4: Congruence mod I

Suppose 7,s € R, r=s modIifr—s el.

Theorem 6.1.2 Congruence mod | is an Equivalence Relation

Given a,b, c € R we have the following properties.

Reflexive. 1 =a mod I because a —a =0 € [.

Symmetric. a =b mod I,b=a mod I because b —a,a —b €.

Transitive. If a =b mod I,b =c¢ mod I, then a =c¢ mod I because a —b,b—c,a—c € 1.

Definition 6.1.5: Coset

Instead of [a] for 2 mod I, we have the notation a + I := {a +i:i € I} called a coset.

7

For example Z,,[a] = a + mZ.

Definition 6.1.6: Quotient Ring

R/I is called a quotient ring.

Theorem 6.1.3 Addition on Ideals

(a+DH+b+D)=a+b+1
(a+DD+1I)=(ab)+1

Proof: Suppose a+1 =c+Iland b+ =d+1. Sincec—a,d—"b €I, then (c —a)+ (d —b) € I implies
(c+d)—(a+Db)el which impliesc+d+I=a+b+1.

To prove multiplication, since c—a, d—b € I, then c(d—b), b(c—a) € I due to absorption property. c(d—b)+b(c—a) €
I = cd-cb+cb—-bacl. Thenab+I1=cd+I [

Quotient Rings are independently associated with homomorphism ¢ : R — S.

Definition 6.1.7: Generators

If R is any commutative ring, let a € R, the ideal generated by a is {ra : r € R} =: (a).

Lemma 6.1.1
(a) is an ideal of R.

Proof: Case 1. ifria,rqa € (a), then ria + roa = (11 + r9)a € (a).
Case 2. if ra € (a),s € R, then s(ra) = (rs)a € (a). ]

These generators are called the principal ideal generated by a.

Theorem 6.1.4

If p(x) is irreducible in F[x] if and only if F[x]/(p(x)) is a field if and only if IF[x]/(p(x)) is an integral
domain.

Let R be a commutative ring with 1 € R. Let A be any subset of the ideal generated by A which is the set
of all finite linear combinations of elements.

(A) :={rias+...+rpa, :r; € R,a; € A}



Then (A) is the intersection of all ideals in a € A.
Suppose R € Z,a,b € Z ideal generated by (a,b) := {xa+by :y,x € Z} = {r-gcd(a,b) :r € Z}.
Z and F[x] are called principle ideal domains while Z[x], Q[x, y] are not principle ideal domains.
¢ : Z — Z/10Z, therefore ¢(a) = [a]ig = a + 10Z.

Definition 6.1.8: Kernel

Let K := {x € Z : ¢(x) = 0} which we learn is called the kernel of ¢, ker ¢.

Theorem 6.1.5

K is an ideal in R.

From the previous example, ker ¢ = (10) = 10Z. What we learned prior is that Z/10Z = Z,.

Proof of Theorem: (1). Suppose x,y € ker ¢, then ¢(x) = Pp(y) =0, p(x + y) = ¢(x) + d(y) = 0.
(2). Suppose x,y € ker ¢, r € R, then (rx) = ¢(r)p(x) = ¢(r)0 = 0.

So ker ¢ is an ideal in R. n
Definition 6.1.9: Image
¢p:={seS:AreR, ¢(r)=5}

Theorem 6.1.6 First Isomorphism Theorem

Suppose ¢ : R +— S is a homomorphism. Let K = ker¢. We can define 5 : R/K — ¢ such that

¢(r + K) = ¢(r). Then ¢ is an isomorphism from R/K to ¢, so R/K = ¢.

Proposition 6.1.1

Suppose ¢ : R — § is a ring homomorphism, then ¢ is injective if and only if ker ¢p = {0}.
Proof of Proposition: ( = ). Suppose ¢ is injective. Let r € ker¢, so ¢(r) = 0, but ¢(0) = 0, so ¢ is
injective ¥ = 0.
( &). Suppose ker ¢ = {0}. Let r,s € R with ¢(r) = ¢p(s).

P(r) = P(s) =0
P(r—s)=0.

So r—s €ker¢, sor—s =0, therefore r = s. Therefore ¢ is injective. [ |
Proof of First Isomorphism Theorem: Assume ¢ is a homomorphism. Suppose r,s € R, 5(7’ +35) =
(1) +6(s), B(rs) = (1) ~
¢ is surjective. Suppose s € ¢, then Ir € R such that ¢(r) = s, so P(r) =s. [

Example 6.1.1

Prove Q[x]/(x* - 2) = Q(V2).
Proof: Define ¢ : Q[x] — C so ¢(f(x)) = f(V2). Let ker ¢ := {f(x) € Q[x] : f(V/2) = 0}.

x? -2 € ker ¢

Claim.ker ¢ is the ideal generated by x2 — 2.
By the first isomorphism theorem, we find that Q[x]/(x2 — 2) = Q(V2) [ ]



6.2 Field Extensions

Definition 6.2.1: Vector Space

J

A vector space over F is an additive abelian (commutative) group V equipped with scalar multiplication
such that a,a,,as € F and v,v,,v5 € V.

1. a(vy + v2) = avy + avs.

2. (a1 +as)v = a1v + aso.

&

a1(asv) = (aasz)v.

=
—
1]

S

Definition 6.2.2: Span

If every element of a vector space V/FF is in a linear combination, we say set {v1,vs,...,v,} span V/F.

J

Definition 6.2.3: Linearly Independent

A subset of a vector space V/FF is linearly independent over IF when there is a linear combination with
¢; € F, then ¢; = O for all i. else is dependent.

Definition 6.2.4: Basis

The subset is linearly independent and spans V /IF.

Definition 6.2.5: Dimension

If p(x) € F[x] is irreducible, then E is an extension field of F. In fact this is called a vector space over FF.
Denoted by [E : FF].

Theorem 6.2.1

Suppose K is an extension field of dimension [K : [E], then

[K:F]=[K:E]E:F].

Proof: Suppose [E : [F] = n. Suppose v1,...,0, € E which are basis for E/IF. Suppose [K : [E] = m. Suppose
wi,..., Wy € K, basis for K/E. Our claim is that {w;v; : 1 <i<m,1<j<n}is the basis for K/IF. Which can
also be stated as {w;v;} span K. Let u € K, {w;} span K/E. So u = ¥ ajw;, a; € E. Each a; = ¥ f;;vj,Bij € F,
SO U = Z‘Bi]-wiv]-. So {w,-vj} span K.

Suppose 3 Bijvjw; =0, Vi, 3, Bijvj € E since {w;} are linearly independent /IE.

2. Bijoj = 0 for each i.

Since {v;} are a basis for E/IF, g;; = 0 for each j,i. Suppose E is an extension field of IF and u € E. [

Definition 6.2.6: Algebraic and Transcendental Functions

Let F=Q, E =R, u = . There is no polynomial p(u) = 0, p(x) € Q. If there is no such polynomial, we
say u is transcendental /IF.
If there is such a polynomial, we say u is algebraic /IF.

To understand two versions of field extensions, let’s look at when Q[a] = Q(a). We can use the first
isomorphism theorem.



Lemma 6.2.1 Q[a] = Q(a)

A function ¢ : Q[x] — Q[a] is injective <= ker ¢ = {0};
— Bf(x) € Qx]: f(x) =

&= a is transcendental of Q.

Proof Part One: Using the first isomorphism theorem, we can let ¢ be a homomorphism,

¢ ={f(a): f(x) € Qla]} = Q[a].

So it is a surjective function. In fact

ker ¢ = {f(x) € Q[x]: f(x) =0}

This ¢ is injective. Suppose a is transcendental/Q, then Q[a] = Q[x]. Therefore Q[«a] is a ring, not a field. =

Definition 6.2.7: Minimal Polynomial

Suppose p(x) is a monic polynomial of the smallest degree, this is called the minimal polynomial of a/Q.

Lemma 6.2.2

p(x) is irreducible.

Proof: Suppose
p(a) = g(x)g(x)
=q(x)g(x) =
So either gq(x) =0 or g(x) = 0. Since p(x) is the smallest degree, either q(x) or g(x) is a unit in Q[x]. [

Continuation of Proof Sketch of Lemma 7.0.1: Using the first isomorphism, suppose « is algebraic. Let
Q[x] — Q[a] and this map has ker¢ = (p(x)). p(x) is an irreducible minimal polynomial of a. Therefore
Q[x]/(p(x)) = Q[x]. Since p(x) is irreducible, then Q[x]/(p(x)) so Q(x) is a field and Q[a] = Q(«). [

We have prev1ously learned that Q(r) is a vector space.

Q(r) =

What is the dim[Q [r] Q]7 We have to find the basis. So what is the basis of Q[r]/Q?

Lemma 6.2.3
A basisis 1,7,7%,..., "1 where n = deg f(x).
Proof: Q[r]={f(x): f(x) € Q[x]}. |f(r) =0,deg f(x) = n|. ]
Lemma 6.2.4
Basis when we mod out f(x), therefore f(x) is the minimum polynomial or r/Q.
Proof: Suppose g(x) € Q[r]. By the division algorithm, g(x) = f(x)g(x) + s(x). Plug in r:

8(r) = f(rq(r) +s(r),

so g(r) = s(r) since f(r) = 0. Therefore s(r) =0 or degs(r) < deg f(x) or s(r) is some polynomial. So g(r) is the
linear combination of 1,7,...,7"" 1. So 1,7,72,...,7""! span Q[r] = Q(r). [



Definition 6.2.8: Adjoin

We say that [F(u) is a field made by adjoining u to FF.

Theorem 6.2.2
Let K/F and u € K an algebraic element over [F with minimal polynomial p(x) of degree n, then

L. F(u) = F[x]/(p(x));
2. {1g,u,u?,...,u" '} is a basis of the vector space IF(u) over IF;

3. [F(u) : F] = n

Corollary 6.2.1
If we have u and v have the same minimal polynomial p(x) in F[x], then F(u) = F(v).

Definition 6.2.9: Algebraic Extension

An extension field K of field FF is said to be an algebraic extension if every element of K is algebraic over
F.

Theorem 6.2.3
If K is a finite dimensional extension field of IF, then K is an algebraic extension of FF.

6.3 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 7

Geometric Constructions

7.1 Constructible Shapes

Which regular n-gons can be constructed?

Definition 7.1.1: Construct

J

a is constructible if you can construct a line of length a.

Definition 7.1.2: Constructible Point

A point in R2 is constructible if its coordinates are constructible.

Definition 7.1.3: Constructible Line

A constructible line is made of constructible points.

r
\

Theorem 7.1.1

Constructible numbers are in the extension field Q.

Proof: Suppose a,b are constructible, they are closed under subtraction. [ |

Theorem 7.1.2
F is constructible so is vVa.

Proof: Suppose a triangle is enclosed in a semicircle with triangle length 1 and radius “;r—l The distance, x, is

+1
o

9 a+1\> (a-1\°
x° = -
2 2
=a

Which shows distance x = va [

Suppose we have constructible points, how do we get new points intersecting lines, circles, and lines on
circles?
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Definition 7.1.4: New Constructible Points

Fl[a] where [[F[a : F] = 2. Which means any constructible point lies in a field:
Qc Q[a1] € Q[ay,a2]<S...CF

Therefore Fy = Fy_q[ax], thus [Fy : Fr_{] = 2.

Let a be the root of a quadratic polynomial. So no constructible numbers must lie in field IF where the
[F: Q] = 2" for some n. Therefore /2 is not constructible.

Lemma 7.1.1 Constructible Points

Let » € R be a constructible with a straightedge and compass <= r lies in a field extension, E with
[E: Q] =2" (power of 2).

7 is not constructible and neither is it algebraic. Therefore constructible points are also only possible iff
[Q(r) : Q] = 2 for some k. We will show that we cannot trisect 60° since we can construct 60°, implying that
not every angle can be trisected.

Because 20° =0 = % can be constructed the cos @ can be constructed.

0520 = cos? 6 —sin? 6
=2c0s%60 — 1
cos360 =4cos® 0 —3cos O

If 6 = % then cos 36 = % and let x = cos20. Then

1
—=4x*-3
B X X
1
0=4x3—-3x=
X x2

0=8x>—6x—1

We claim that 8x® — 6x — 1 is irreducible/Q, which we can use the root test to check that it is indeed
irreducible.
Question: Which regular n-gons can be constructed? i.e. for which n can angle 27” be constructed.

Such an angle can be constructed if and only iff cos 277T,sin 271—” can be constructed

i 20
Slnn

if and only iff (cos Qn—”, sin Qn—”) is a constructable point if and only if p = cos 27” +sin 27”, [Q(p) : Q] = power of two,

p" =1, pisan nt" root of 1 satisfying x" — 1 = 0. Suppose n = 2“1;7‘212 . pi" is a factorization of regular n-gons
is p1 = 2,p odd for j > 2 constructable if and only if a; =1 for j > 2 and each p; — gon is constructable.



Definition 7.1.5: Fermat Prime

122 +1= p is prime, then p is a fermat prime.

Corollary 7.1.1
Let ¢ : Q[x] — Q[x] := {f(x) : f(x) € Q[x]}. By ¢(p(x)) = p(a), this shows surjectivity.

Proof of Corollary: Suppose € Q[x], then 3f(x) € Q[x] such that p = f(x), so ¢(f(x)) = f(a) = B.

¢ is injective if and only if ker ¢ = {0}. This is a consequence of the first isomorphism theorem.

Proposition 7.1.1 Proof
ker¢p = {0} & (f(x)=0 = f(x) =0) & a/Q is transendental

7.2 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 8

Groups

8.1 Definition of Groups

A group is a singular operation ring. Groups are basically bijections from a set to itself or permutations. Most
of the course we will be looking at finite groups. Let X be a set. Assume X # ¢ Note Sx, called the symmetric
group on X, be the permutations of set X = Bijections of X +— X. The operations of composition properties
have: Identity permutation e or i or 1. We also have associativity, (a o b) o ¢ = a o (b o ¢). We also have every
element have a unique inverse, this is due to the group being a bijection of elements. If f is a permutation of X,
then it’s unique inverse is denoted f~'.

An abstract group G is a nonempty set with the same axioms with the operation: -, *, or juxtaposition. If
there is an identity element say 1, so 1*a =a*1 =a for all a € G. The group does not need to be commutative
but the identity is commutative. Associative as for all a,b,c € G, (a*b)*c =ax=(b+c) =a=b+c. Every element

a € G has an inverse a7 1.

Definition 8.1.1: Abelian Groups

G does not need to be commutative, but if it is we call it a commutative group or abelian.

Sx for X as any set. If G is a subset of Sx, which is closed under under composition and inverses, then G
is a group. Cayley’s Theorem has a representation of this. So every group is a subset of the symmetric group.
Which we will prove later on.

Suppose X :={1,2,...,n}, then Sx is denoted by S;, a symmetric group by n letters. For example, S3 is
the permutations of {1,2,3}. The notation for permutations is as follows: Suppose ¢ € S3, denote it

1 2 3
(a(l) a(2) 0(3))-

(1 2 3 (1 2 3 (1 2 3 (1 2 3 (1 2 3 (1 2 3
€=11 2 3//9v= |1 3 2//92% |2 1 3):987 (2 3 1]/94% |3 2 1)]'95T\|3 1 2

Suppose 02 0 04. Then we look at o2 and we see that 1 — 3, but then if we look at 3 in g4, then we see that

3 — 3, thus 1 — 3. And we do this so on to find (il)) ? g)

Example 8.1.1
R 1 2 3
01°02= 19 3 1
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If (R, +,-) is a ring with operations addition and multiplication, then (R, +) is a group. The identity in an
additive group is 0. It is associative, and every element, a, has an additive inverse, denoted by —a. In fact, these
rings are abelian groups.

Let F be any field. Let F* := {a € F : a # 0} := U(F) is a group under multiplication. This group
has identity 1 € F, it is also associative and has inverses. Operation * on G means * : G X G — G, therefore
+(g, h) = g+ h. More generally, if R is a ring, R* := {4 € R : a is a unit in R} := U(R) is a group.

Example 8.1.2

Z; = {1,5}.

8.2 Properties of Groups

Definition 8.2.1: Group under Multiplication

Suppose G is a group (G,*). (+*:GXG+— G)1e€Gl*a=a+1VaeG(axb)xc=ax*{b=*c)Va,b,ceG
VaeG,3a ' €Gs.t.al»a=1a>=a=a Inductively, a® =a*@" ) =axax---+a

Sx = permutations on X under composition, non-commutative for #X > 3. If (R, +,*) is a ring, then
(R, +) is a group under addition which is commutative. Note that (R, +,*) is not the notation for group, but
instead a ring. This means that 0 € R is possible even if it’s closed under multiplication because it’s not a group.
U(R) = R* = set of units in R = {u € R: I € R with uv = vu = 1} is a group.

Example 8.2.1

7, group of units in Z,,.
Zy ={1,5}
Zy;=1{1,3,5T}

z, = {1,2,...,p—1}

If R is any ring, then Mat,(R) = ring of nxn matrices with entries in R Mat,(R)* = group of invertible
matrices entries in R. If n > 2, Mat,;(R)* is non-abelian.

If F is a field, then matrices are transformations of vector spaces. Mat,(IF) is the same as a linear transfor-
mation of an n-Dimensional vector space over IF. Suppose A € Mat, (IF), then v is an n-Dimensional vector space.
We define T(v) = Av as T : V +— V as a linear transformation. T(Av + pw) = AT (v) + uT(w).

Definition 8.2.2: General Linear Group

This Mat,(F)* = a group of invertible nxn matrices enteries in IF under multiplication is denoted by GL,(IF)
(General Linear Group).

Example 8.2.2
GLo(Fy).

2

with a,b,c,d € {0,1}, is invertible if and only ad — bc # 0.

O A A R



So #GLy(IF2) = 6, which is isomorphic to Ss.

Coming from geometry, they also have groups. If you take some solid and take the rigid motions of some
n — gon then it will also be a group. A rigid motion is when you take a figure and you lift it and put it back in
the same place: rotations and reflections.

Example 8.2.3
— 2n 2

Rigid motions of a regular 3-gon: Identity, rotation of 120° = =* counterclockwise call this r, or 7= =

rotation by 240° = 4?”, or reflection in the vertical line call this s.

1:1—>1,2—>52,3—>3

r:1—-2—-3-—-1
r2:1-53-52-51
s:1—>1,2<3
sr:1e3,2—>2
rs : reflection through 3.

This group is denoted D3 order 6 called the dihedral group. Some texts use Dg. D, or Day,

Example 8.2.4

Let H, K be groups. Group HXK has underlying set HxK with operation (hy, k1)*(ha, ko) = (h1*hs, ki*ks).
This makes H X K into a group - Identity is (1,1). - Associativity - Inverse (h, k)™* = (h~%, k!). - Closure
under *.

(Zy X Z3, +) has order 4 elements. (Zg4,+) also has 4 elements. Z7,Z; also have 4 elements. Now... are
they isomorphic? Let’s look at the tables for these groups.

(Zs+) 0 1 2 3
0 01 2 3
1 1 2 3 0
2 2 3 0 1
3 3.0 1 2

z, 1 2 3 4

1 1 2 3 4

2 2 4 1 3

33 1 4 2

4 4 3 21



0—1
1—-2
2—4
3—3

Theorem 8.2.1 Fundamental Theorem of Finite Abelian Groups

Every finite abelian group is a direct product of groups (Z,, +) various n.

Definition 8.2.3: Other properties of Groups

Let G be a group. Some other properties which follow from the definition:

1. Cancelation law: Suppose a,b,c € G.

ba=ca = b=c

Proof: ab = ac implies the following:

a~Y(ab) = a Y(ac) (8.1)
ata)b = (a ta)c (8.2)
1b = 1c (8.3)
b=c (8.4)

|

2. Identity is unique. Suppose e, f identities with ef = f =e.

3. Inverses are unique: If a € G, if ba = ab = e and ca = ac =e, then b = c.

Proof: Suppose ab = e = ac and ba = e, then bac = ec = c. Suppose ac = e, then bac = b, which
implies b = c. [

4. (ab)y' =b1g7!

Proof:
(ab)*(bta Yy =abblat=aeal =aat =

By uniqueness of inverse, (ab)™t =b~1a~! [

1

5. (@) =a. a7'a = aa~! = e SO by uniqueness of inverse (a71)~! = 4.

Definition 8.2.4: Order

Let G be a group. Let a € G. The order of a is the smallest strictly positive integer n such that
a":=axrax---ra=1. a" =a(a"")
If there is no such n, a has infinite order.

Theorem 8.2.2
If #G is finite, every a € G has finite order.

Example 8.2.5
Dihedral groups have finite order for all elements.



Example 8.2.6 (G| = (Z4,+))

Elements Order
0 1

1 4
2 2
3 4

Example 8.2.7 (G =Zo X Zs)
Elements Order

(0,0) 1
(0,1) 2
(1,0) 2
(1,1) 2

Example 8.2.8 (G3 = Z)

Elements Order
1 1

2 4
3 4
4 2

This is another way of showing G; and Ggs, are isomorphic.
Corollary 8.2.1 Infinite Order

Suppose a" # e for all n. Then |a| = co.

Theorem 8.2.3
Suppose a € G, |a| = n. If k € Z such that a* = 1 if and only if n | k.

Proof of Theorem 8.2.3: (= ). Suppose k € Z such that a* = 1. Let k = nq + r, then:

Ilk = g+
=a"a"
= (@"a’
=19a"
=1a’.

Since n is the smallest integer, then ¥ = 0. Thus n|k.

(&=). Given nlk, then k = ng. Then:

a™l = (an)q
=19
=1.

Thus a* = 1.

Corollary 8.2.2

a' = al if and only if 2’/ = 1. Thus nli —j or i =j mod n.



Proof of Corollary: (= ). Given a' = a/, then:

ala™l =al(a))!

alvl =1.
Thus a'~/ = 1. o
(&). Given a'”/ =1, then:
ala”l =1
al(ah =1
al(a)'al = af
at=al.
Thus a' = a. [ ]

Theorem 8.2.4
Suppose f|n then |a

tl:?'

Proof of Theorem 8.2.4: Let |a'| = k. We know that a" = 1, so (a’)7 =1, so k | 2. Since (a))k =1 = a*’.

Thus n | tk,so ¥ [ k, k= %. [
Suppose |a| = 6, then |a*| = 3.

More generally, let t € Z, can assume t € Z”°. Then the order is lcm}ft’") = = d& 5. Then la| = & where

d = gcd(t, n).

Proof of Example: Let |at| = k and we know a” = 1, so (a')"/? = (a'/?)" which L is an integer, thus (a™)td =
14 =1. So k | 7. Since atk =1, then n | kt, 5 | k- % implies 7 | k. [

8.3 Subgroups

Definition 8.3.1: Subgroup

Let G be a group @ # H € G. H is a subgroup of G if it is a group under the operation of G. i.e.
Va,be H,abe H,1 € H,if a € H then a~' € H, and associativity. Denoted by H < G.

Something to note that you may realize through a lot of practice problems is that H < G if and only if
Va,b € H,ab™' € H. We could also have a subgroup H < G and ord(H) < oo, then H < G if and only if H # @
and closed under operation of group.

Proof of Example: Letac G,dn >0,a" =1, then a” = a(a"'),a"! € H. [ |

G = GL(n,F) = non-singular n X n matrices, entries in [F, determinant is non-zero, meaning General Linear
Group. One of our exercises is SL(n,F) = set of matrices in GL(n,F) with the determinant always 1, meaning

Special Linear Group.
det(AB) = det(A) det(B)

If det(A) = det(B) = 1, then det(AB) = 1. If det(A) # 0, then det(A™!) = =1

1
det(A)

Let C* be a set of non-zero complex numbers. Let n € Z>9.

{exp(?):kzo,...,n—l}

Which are the complex roots of i. exp (2k”i) = cos (zk—”) + isin (2]‘—”) since we can think of multiplication as

n n n

cyclical.



Given any group, there are important examples you can get from any group. So we know that vector spaces
are a constant multiple, or also algebraically stated as an ideal ring.

Definition 8.3.2: Cyclic Subgroup Generated by a

Let a € G, < a >, which are a subgroup generated by a, is

{a" :n e}

We need n € Z since we want all multiplicative powers, positive and negative, since the order can be finite
or infinite. Since its closed under multiplication and inverses, it is also a subgroup. We consider this as the
smallest subgroup of G containing a.

We call this cyclic because we consider G to be a finite order. For an infinite subgroup, look at (Z,+), as a
subgroup generated by 2is...,-2,0,2,4,....

For example if H < G and a € H, then <a >< H.

Definition 8.3.3: Subgroup Generated by Subset

If S C G, the subgroup generated by S, < S > is the smallest subgroup of G containing S. This is the

same as N H, which is the intersection of all subgroups of G containing.
H<G and SCH

For example, if we take two random elements of a symmetric group, they will contain the entire group.

Similar to ideals, we have trivial subgroups. For example, ponder about looking at a subgroup generated by
an identity element.

Definition 8.3.4

If G is a group, and G =< a > for some a € G, then G is cyclic.

(Z.,,,+) is cyclic as it is generated by 1, and also generated by any m € Z,,, with ged(m, n) = 1.
Z; ={1,2,3,4} is cyclic generated by 2,3.
7. ={1,2,3,4,5,6}, we find that 23 = 8 = 1, which does not show that G is cyclic, since it does not contain the
entire set. However, 32 = 2 and 23 = 8 = 1, so 3° = 1, and since ord(G) = 6 and ord(3) = 6, then the group is
cyclic.

Theorem 8.3.1
If p is prime, then Z; is cyclic.

Proof of Theorem 8.3.1: This is a corollary of this paper. The work is extensive but we only need to know
this Theorem. m

8.4 Group Homomorphisms and Isomorphisms

Definition 8.4.1: Group Homomorphism

If we let f : G — H a function with a multiplicative operator, then for all a,b € G, f(ab) = f(a)f(b).

Definition 8.4.2: Group Isomorphism )

f : G H is an isomorphism if it is a bijective homomorphism.
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Example 8.4.1
Let G := {exp (Qk”i) ne”l;k=0,...,n-— 1} under multiplication. Let H : (Z,, +)

n

Define f : G— H by f (exp (ka)) =k eZ,. Prove G and H is an isomorphism.

n

2kmti 2lmi
n’”) , exp (Tm) € G, then

f(exp(ani)exp(ani)) zf(exp(w)) Cral zf(exp(2kni))f(exp(2lni))

n n n n

Proof of Example 8.4.1: f is a homomorphism if exp (

So f is a homomorphism. f is a well-defined isomorphism. exp (Qk”i) = exp (QZm) if and only if exp (@) =1

n n
2(k-D)m
n

if and only if is a multiple of 27 if and only if n|k — [ if and only if k =/ mod n.

Thus f : exp (@) — k (onto) or ord(G) = ord(H) = n.G = H means that G and H are isomorphic. [

Example 8.4.2
f:(Z,+) = (Z,,+) is defined by f(k) = k = [k] is a homomorphism because [k+1] = [k]+[I] but certainly
not injective because f(0) = f(n) = f(2n). But f is surjective if k € Z,, f(k) = k.

Example 8.4.3
f:(Z,+)-G:= {eXp (2”ki)}, then f(k+1)= f(k)f(l) is a homomorphism.

n

Proposition 8.4.1 Isomorphism of Infinite Cyclic Groups

Suppose G is an infinite cyclic group. Then G = (Z, +). Up to isomorphism, they can be different as sets,
but there will always be an isomorphism between them due to their infinite nature. So there is only exactly
one infinite cyclic group.

Proof of Proposition 8.4.1: Given G is an infinite cyclic group, operation under multiplication. There exists
a € G such that G := {a" : n € Z}. Define a map, f : Z — G, by defining n + a”. We can check f is a
homomorphism, because f(n +m) = a"™*™ = a"a™ = f(n)f(m). If f(m) = f(n) then a™ = a", then a” ™" =1 if
and only if m —n =0 or m = n, showing injective. It is surjective because it is cyclic. [ |

Proposition 8.4.2 Isomorphism of Finite Cyclic Groups
Suppose G is finite cyclic group under multiplication and ord(G) = n, then G = (Z,, +).
Proof of Proposition 8.4.2: Given ord(G) = n and G is a finite cyclic group under multiplication, let f :
(Z,,+) = G be defined by x — a*. Then:
f(a+b)=c"?
=c%ct
= f(a)f(b).
Thus f is a homomorphism. If f(a) = f(b), then:

— a=b modn.

Thus f is injective. Finally f is surjective since each element of Z, 3 x — a*. Thus (Z,,+) = G. [



Example 8.4.4
If p is prime, (Z;,, +) = (Zp-1, +)

Proof of Example 8.4.4: Suppose p prime. Let f : (Z,[x],+) = (Zp-1,+) be defined by x > x mod p — 1.

Then:

fx+y)=x+y
= f(x) + f(y).

Thus f is a homomorphism. If f(x) = f(y) then:

x-y=0 modp-1
x=y modp-1.

Thus f is injective. f is surjective since every element of Z,[x] maps to some element in Z,. Thus (Z;, +)

(Zp—lr +)-

IR

Definition 8.4.3: Automorphism

An isomorphism of f : G + G is an automorphism.

Theorem 8.4.1 Properties of Homomorphisms
1. f: G — H is a homomorphism, then f(1g) = 1x.
2. IfaeG, f(a') = f(a)~".
3. Im(f) ={h e H:3g €G, f(g) = h} is a subgroup of H.

4. If f is injective then J_‘ : G — Imf is defined by 7(g) = f(g) is an isomorphism G— Im(f).

Proof of Theorem 8.4.1: 1. Given f is a homomorphism, then f(1g) = f(1¢-1g) = f(1c)f(1g) = 1H.

2. 1=aal. So1=f(1) = flaa™) = f@f (@) = f@a)= fla)™"
3. Suppose hy, hy € H and there exists g1, g2 € G such that

f(gl) =h
f(g2) = ha
f(8182) = f(81)f(g2) = hiha

So hy,hy € Imf. Suppose h € H such that 3¢ € G, f(g) = h, by (2) f(g™") = f(g)_1 =h7!so h™! € Imf.

Theorem 8.4.2 Cayley's Theorem

Every group G is isomorphic to a subgroup of a symmetric group, in fact a unique group of permutations

of G as a set.

Proof of Theorem 8.4.2: Let G be a group. Define f; as above, fo(x) = gx (we will dub this the Cayley rep-
resentation to use from now on). We have so far shown that f; is in sym(G) = permutations of G. f : G — sym(G)

is a homomorphism g +— fq.

We claim that g + sym(G) is injective. Let g, h € G. Suppose fg = fy, then gx =hx = gl=hl = g="h

for all x € G. By what we have done earlier, we know G = Imf, and the Imf is a subgroup of sym(G).



If G is finite ord(G) = n. Then sym(G) = S,,. Then G is isomorphic to a subgroup of S,. Note that
ord(S;) = n!. This is called the Cayley representation.

We learned the sigma notation of permutations. Now learn the Cycle Notation.

(1 2 3 4 5 6
““l2 513 6 4

However, its cycle representation can be just written as (1 25 6 4 3)
1 2 3 4 5 6
3416 5 2

(1 3)(4 6 2)(5) or (1 3)(4 6 2). What about the product of cycles?

Example 8.4.5

o = (132)(465), T = (23)(56). ot = (13)(2)(46)(5)

Example 8.4.6
o = (1345) in S5 02 = (14)(2)(35)

Definition 8.4.4: Conjugate

Let ¢, x € G, then gxg~! is called the conjugate of x by g.

Example 8.4.7
Ss3. 0 =(123), 7 = (12), ot = 07 = (132) = (213).

Example 8.4.8
o = (13546), T = (245), 7! = (542) = (254), ot ! = (13256)

Conjugation preserves cycle structure. t(aias... ak)”c_l

not exist, then t(ay) = a;.

Definition 8.4.5: Faithful

If ¢ = f; is a homomorphism and is injective, we call this faithful.

Definition 8.4.6: Group of Automorphisms of G

Aut(G) :={¢ : G — G : ¢ is an automorphism of G} under composition operation.

= (t(ay)t(asz) ... t(ax)). If for example 7(a1) does

Example 8.4.9
Let’s define ¢ : G — Aut(G). g — ¢g by Pg(x) = gxg™ for x € G.

Ezxample 8.4.9: We claim ¢4 € Aut(G) and g — ¢, is a homomorphism ¢ : G — Aut(G).

Pglxy) = gxyg™
= gxg 'gyg™
= Pg(x)Pg(y)



¢g is bijective because it is has inverse (Pé:l = ¢g1. Check: x € G,(Pg 0 Pg1) = Pg(Pg-1(x)) = Pg(g7'xg) =
g(g7'xg)g™ = x. Similarly ¢g-1 0 ¢¢ = identity on G. Let g, h € G such that gh + ¢, where for x € G

Pon(x) = ghx(gh)™

g(hxh™)g™
§on(x)g™"
Pg(Pn(x))
$g o Ppn(x)
Suppose G is abelian, would this still hold? NO. If x € G, ¢4(x) = ¢xg~! = x. Note that ¢y is the identity
map in Aut(G) for all g € G [

Example 8.4.10

Let G be any group. Define Inn(G) := {¢¢ : g € G} where ¢g4(x) = gxg™'. The reason why we call it
Inn(G) is because we call it the group of inner automorphisms of G.
Prove Inn(G) < Aut(G).

Proof of Exercise 8.4.10: We have previously shown that ¢¢ € Aut(G), thus Inn(G) S Aut(G). Since
g > ¢ is a homomorphism, Inn(G) = Im(¢) is a subgroup of Aut(G). [ ]

Example 8.4.11
Compute Inn(S3).

Proof of Exercise 8.4.11:
S3 = {e, (12),(13),(23), (123),(132)}

Let ¢ = (12). ¢g(id) = id. ¢4(12) = (12). ¢4(13) = (12)(13)(12) = (23). ¢,4(23) = (12)(23)(12) = (13).
$g(123) = (12)(123)(12) = (213) = (132). P4(132) = (123). n

In fact in this case, we can check that Inn(G) = Aut(G).

8.5 Symmetric and Alternating Groups

Theorem 8.5.1

Every element in S;, can be written as a product of disjoint cycles.
(123)(4567) is disjoint. (123)(426) is not disjoint.

Theorem 8.5.2

Every w € S;, can be written as a product of transpositions.

o=(12...n)
=(1n)(1(n - 1))...(13)(12)

Theorem 8.5.3

Suppose ¢ € S;;. with
0 =1T1...Tk : T; transpositions

=Ay... A, A transposition

Then k = r mod 2.




Proof of Theorem 8.5.3: Suppose T = (ab) is a transposition, then 7=' = 7. Suppose ¢ = 7y ...T, trans-

positions, then 07! = 14...7;. First reduce to the case that ¢ = e. Suppose 0 = 7;...7¢ = A;...A,. Then
1=00"t=1y...7€Ar...A;. Which the number of transpositions is k + 7. Thus k =r mod 2 & k+r =0
mod 2. So k=r mod 2 & k+7r is even. We need to prove that e =7 ... 1T%.

Let’s do a proof by contradiction. Suppose e = 13 ... Tk, with k odd. Some a € {1,...,n} appears in some
7; of all such ways of writing e choose one with the fewest number of tanspositions as far left as possible. Of all
the ways of doing this, choose one of the form ... (ad)(ac)(ab)( )( )... with no a’s to the right of this (ab). We
will show this can either cancel (ab) (ab) and get fewer transpositions or move a to the left.

(cd)(ab)()()...
Possibilities for (cd) if {c,d} N{a,b} = @, then (cd)(ab) = (ab)(cd) If {c,d} = {a,b}, then we could cancel and
result in fewer transpositions.

The remaining case ¢ = a,d # b results in (ad)(ab) = (ab)(bd) = (abd). You eventually must get e = (ab)
after cancelling out as much as possible, but b # a, so a contradiction. [ |

Definition 8.5.1: Sign

The sign of ¢ is 1 if 0 can be written as an even number of transpositions and —1 otherwise. Sign o is
denotated by sgn(o) or €(0). The theorem says sgn(o) is well-defined.

Definition 8.5.2: Even Symmetric Group

Ay ={0€S,:(c)=1}

Theorem 8.5.4
A, is a subgroup of S,.

8.6 Exercises

Example 8.6.1 (Exercise 1)

23. Let SL(2,R) be the set of all 2 X 2 matrices such that a,b,c,d € R and ad — bc = 1. Prove

b
d

that SL(2,R) is a group under matrix multiplication. It is called the special linear group.

Example 8.6.2 (Exercise 2)

Let T be a set with at least three elements. Show that the permutation group A(T) is nonabelian.®

%Note the following proof was an adaptation of class notes, I did not makeshift an entire permutation model. I used what
was given to me to prove commutative being false.

Example 8.6.3 (Exercise 3)

If f € S,,, prove that fk = I for some positive integer k, where f¥ means fo fo fo...o f(k times ) and I
is the identity permutation.

Example 8.6.4 (Exercise 4)
If a,b € G, prove that ord(bab™!) = ord(a).

Example 8.6.5 (Exercise 5)



U ) has order 3 in GL(2,R) and b = (

(b) Show that ab has infinite order.

o

(a) Show that a =

-1
1 0 ) has order 4.

Example 8.6.6 (Exercise 6)
Prove that G is abelian if and only if (ab)~! = a='b~! for all a,b € G.

Example 8.6.7 (Exercise 7)

If every non identity element of G has order 2, prove that G is abelian.

Example 8.6.8 (Exercise 8)
If a,b € G, prove that ord(ab) = ord(ba).

Example 8.6.9 (Exercise 9)

If ord(G) is even, prove that G contains an element of order 2.

Example 8.6.10 (Exercise 10)

Assume that a,b € G and ab = ba. If ord(a) and ord(b) are relatively prime, prove that ab has order
ord(a) ord(b).

Example 8.6.11 (Exercise 11)
If a,b € G,b% = e, and ab = b*a, prove that b3 = e and ab = ba.

Example 8.6.12 (Exercise 12)
If (ab)’ = a’b’ for three consecutive integers i and all a,b € G, prove that G is abelian.

Example 8.6.13 (Exercise 13)

Let G be an abelian group and let T be the set of elements of G with finite order. Prove that T is a
subgroup of G; it is called the torsion subgroup. (This result may not hold if G is nonabelian®.)

%See Exercise 5

Example 8.6.14 (Exercise 14)

Let G be a group and a € G. The centralizer of a is the set C(a) = {g € G| ga = ag}. Prove that C(a) is
a subgroup of G.

Example 8.6.15 (Exercise 15)
If G is a group, prove that Z(G) = (,ec C(a) (notation as in Exercise 33).

Example 8.6.16 (Exercise 16)

Suppose that H is a subgroup of a group G and that a € G has order n. If a¥ € H and (k, n) = 1, prove
that a € H.



Example 8.6.17 (Exercise 17)

If H is a subgroup of a group G, then the normalizer of H is the set N(H) = {x €G|x'Hx = H} (notation
as in Exercise 27). Prove that N(H) is a subgroup of G that contains H.

Example 8.6.18 (Exercise 18)

Let G = (a) be a cyclic group of order n.

(a) Prove that the cyclic subgroup generated by a™ is the same as the cyclic subgroup generated by at,
where d = (m,n). [Hint: Tt suffices to show that a? is a power of a™ and vice versa. (Why?) Note that by
Theorem 1.2, there are integers u and v such that d = mu + nv.]

(b) Prove that a™ is a generator of G if and only if (m,n) = 1.

Example 8.6.19 (Exercise 19)
Prove that Z,, X Z,, is cyclic if and only if (m,n) = 1.

Example 8.6.20 (Exercise 20)

Prove that the function & : R — GL(2, R) defined by h(x) = ( ch 0 ) is an injective homomorphism.

1

Example 8.6.21 (Exercise 21)
Show that Z; is isomorphic to Z7.

Example 8.6.22 (Exercise 22)

If f : G — H is a surjective homomorphism of groups and G is abelian, prove that H is abelian.

Example 8.6.23 (Exercise 23)

Prove that a group G is abelian if and only if the function f : G — G given by f(x) = x™! is a homomor-
phism of groups. In this case, show that f is an isomorphism.

Example 8.6.24 (Exercise 24)

Let N be a subgroup of a group G and let a € G.
(a) Prove that a'Na = {11_11’111 | n e N} is a subgroup of G.
(b) Prove that N is isomorphic to a 'Na. [Hint: Define f : N — a™'Na by f(n) = a_lna.]

Example 8.6.25 (Exercise 25)

Assume that a and b are both generators of the cyclic group G, so that G = (a) and G = (b). Prove that
the function f : G — G given by f (111) = b’ is an automorphism of G.

Example 8.6.26 (Exercise 26)

If G = (a) is a cyclic group and f : G — H is a surjective homomorphism of groups, show that f(a) is a
generator of H, that is, H is the cyclic group (f(a)). [Hint: Exercise 15.]



Example 8.6.27 (Exercise 27)
2y X2y and Zo X Ly X 2o

Example 8.6.28 (Exercise 28)
Prove that Aut(Z) = Z.

Example 8.6.29 (Exercise 29)
Prove that the cycle (ajas - --ag) is even if and only if k is odd.

Example 8.6.30 (Exercise 30)

Prove Theorem 7.25: The order of a permutation 7 in S, is the least common multiple of the lengths of
the disjoint cycles whose product is 7.

Example 8.6.31 (Exercise 31)

Let By, denote the set of odd permutations in S,. Define a function f : A, — B, by f(a) = (12)a.

(a) Prove that f is injective.

(b) Prove that f is surjective. [Hint: If § € B, then (12) § € A,.] So f is bijective. Hence, A, and B,
have the same number of elements.

(c) Show that |A,| = n!/2. [Hint: Every element of S, is in A, or B, (but not both) and |S,| = n!]

Example 8.6.32 (Exercise 32)
Prove that the center of S,;(n > 2) is the identity subgroup.

Example 8.6.33 (Exercise 33)
If 7 is the k-cycle (ajas - - - ag) and if 0 € S,,, prove that 0to™! = (0 (a1) 0 (a2) - - - o (ax)).

Example 8.6.34 (Exercise 34)

Let G be a subgroup of S, that contains an odd permutation 7.
(a) Prove that the number of even permutations in G is the same as the number of odd permutations in

G.
(b) Explain why 2 divides |G].
(c) If K is a subgroup of S, of odd order, prove that K is actually a subgroup of A,.

Example 8.6.35 (Exercise 35)

Prove that S;, is isomorphic to a subgroup of A;s.

Example 8.6.36 (Exercise 36)

Find the inverse of each permutation in S3.

Example 8.6.37 (Exercise 37)

Find the multiplicative inverse of each nonzero element in
(a) Zs

(b) Z5



(c) Z7

Example 8.6.38 (Exercise 38)
Let G={x € R|x >0 and x # 1}. Define the operation * on G by a*b = a™? for all a,b € G. Suppose
G is a group under the operation *, prove it is abelian.



Chapter 9

Normal Subgroups and Quotient
Groups

9.1 Congruences and Lagrange’s

Definition 9.1.1: Left Congruence

Let H < G. Define a relation on G by a ~ b,a L b mod H if b='a € H if and only if a='b € H called
”Left Congruence modulo H”.

Theorem 9.1.1

Left congruence is an equivalence relation.

Proof of Theorem 9.1.5: 1) It is reflexive. If a € G, then a™'a = ¢ € H.
2) Let a,be Gthena~b & a'beH & b laceH. Thusa~b & b~ a. Hence ~ is symmetric.
3) Suppose a,b,c € G, then a ~b,b ~ ¢ then b=*a,c™'b € H so (c™'b)(b™'a) =c'ae Hsoa ~ c. [

What are the left equivalence classes?

Definition 9.1.2: Left Congruence Classes

{beG:b=a modH}={be G:3heH,b=ah}=aH ={ah:h e H}. We call aH the left coset
containing a which partition G. L.e. it is the union of left cosets and 2 cosets are either identical or disjoint.

Suppose G = S3 and H = {(12)) = {e, (12)}.
(13)H = {(13), (123)}
(23)H = {(23), (132)}
Then Sz = {e, (12)} U {(13)(123)} U {(23), (132)}.

Proposition 9.1.1
All left cosets of H have #H.

Proof of Proposition 9.1.1: Let a € G,aH = {ah : h € H} be a left coset of H in G. We define a map
H — aH which has inverse H <— aH. Since they are bijections, then #H = #aH. aH is not a group, this
mapping is called a set map. [ |

Definition 9.1.3: Index of H in G
ord(G)

[G : H] is the number of distinct cosets of H in G called the index of H in G so [G : H] = ord(H)"

63



Theorem 9.1.2 Lagrange’s Theorem
Suppose G is a finite group, ord(G) = n. If H < G, then ord(H)| ord(G).

Proof of Theorem 9.1.6: Suppose G=GUa HU---UaH, k = # of distinct cosets, where each of the a;H
are distinct left cosets of H in G such that #a;H = ord(H) for all i. So ord(G) = k ord(H), so ord(H)|ord(G). m

Proof of Theorem 9.1.6: [

Corollary 9.1.1 Corollary of Theorem 8.5.6
Suppose you had a finite group G of prime order. If H < G, then H = {e} or H = G.

Proof of Corollary 9.1.1: ord(H)|p so ord(H) =1 or ord(H) = p. [

Corollary 9.1.2 Corollary of Corollary 9.1.1
Suppose a finite order G of prime order. Then G is cyclic = (Z,, +).

Proof of Corollary 9.1.2: Let 1+#a € G. Let H = {a). By previous cor 2, it is not the trivial group, thus it
must be H = G. [

Corollary 9.1.3 Corollary of Fermat's Little Theorem
Let p be prime, a € Z,p { a, then a’?~! =1 mod p.

Proof of Corollary 9.1.3: Let G=. Leta € Z,p ta,[a] # [0] €. Then ord({[a]))|p — 1. Then [a]P~! =[1] €.
Hence a?~' =1 mod p. [

Corollary 9.1.4 Corollary 2 of Fermat's Little Theorem

For alla € Z, a? =a mod p. Thus ”pp_“ e”Z.

Example 9.1.1

Suppose ord(G) = 4. Let 1 # a € G. Since ord({a))|4, thus ord({a)) = 2 or ord({a)) = 4. Suppose
ord(a) = 2,{a) = {1,a}. Let a,b € G and b # 1,ord(b) = 2, thus G = {1,a,b,ab} = Cy X Co = \/ called
Klein-4 Group.

9.2 Normal Subgroup

{
We have previously defined Left Congruence as H < G,a,b € G, then a = b mod H if b™'a € H if and only if
a~'b € H. We also defined left cosets as
aH :={ah : h € H}

Definition 9.2.1: Right Congruence

a=b mod H if and only if ba~! € H if and only if ab~! € H. Right congruence classes is an equivalence
class relation with an equivalence. With right cosets defined by:

Ha:={ha:heH}

In fact note that a € aH N Ha, but it may also be the only element in common. It’s possible that aH # Ha.



Example 9.2.1
G =S3,H = {1, (12)} = ((12)).

Our left cosets are:
H=1{1,(12)} (13)H = {(13),(123)} (23)H = {(23), (132)}
What about right cosets?

H={1,(12)} H(13)={(13),(132)} H(23) ={(23),(123)}

Example 9.2.2
N ={1,(123),(132)} = {(123)).

Left Cosets:
N (12)N ={(12),(23),(13)} = (23)N = (13)N

Right Cosets:
N N(12)

Thus the Index, [G : N] = 2.
Remember that the number of left cosets always equals the number of right cosets for any group := S:ggg; =
[G: H]

Definition 9.2.2: Normal Subgroup

Suppose N is a subgroup of G, then N is a normal of G, if the left cosets are the same as the right cosets.
Denoted by N < G. N < G is a normal subgroup if Va € G,aN = Na :={xa:x € N} ={ax : x € N}.

Theorem 9.2.1

Suppose N < G. Then N < G;

(1) if and only if the set of left cosets is identical to the set of right cosets;

(2) if and only if for all a € G,aN = Na.;

(3) if and only if for all 2 € G, aNa~! = N called the normalizer;

(4) for all a € G,a 'Na = N;

(5) for all a € G,x € N,axa™* € N;

(6) for all a € G,x € N,a 'xa € N;

(7) if and only if multiplication of left cosets is well-defined, i.e. if aN,bN are left cosets of N in G and we
t

ry to define multiplication:
(aN)(bN) = abN

if cN =aN,bN = dN, then abN = cdN;
(8) if and only if right coset multiplication is well-defined.

Proof of Theorem 9.2.1: (2) implies (1) is trivial.

Suppose (1) implies (2). Since a € aN, e € N,a = ae € aN = Nb, thus a € Nb. If we choose a as our
representative, then Nb = aN.

Suppose (2) implies (7). Suppose aN = Na for all a € G. Suppose aN = c¢N,bN = dN, prove abN = cdN.
Since aN = cN if and only if c'a € N and likewise for bN and dN. Then (cd)'ab € N if and only if
d~c™lab € N. [

Theorem 9.2.2
N < G, then multiplication of cosets is well-defined if aN = ¢N,bN = dN then abN = cdN.



Proof of Theorem 9.2.2: Given a,b,c,d € G, aN = cN,bN = dN if and only if c™'a € N,d"'b € N. We
know that since c™'a € N, then d~'(c™'a)d € N by proposition. Multiply (d='(c7'a)d)(d~'b) = d~'c~'ab € N
Thus (cd)'ab € N. |

Proposition 9.2.1
N <G if and only if Va € G and x € N, then axa~! € N if and only if a7 'xa € N.

Proof of Proposition 9.2.1: (= ). Suppose N < G. Let a € G, x € N. Since aN = Na, for x,y € N, let
ax € aN such that ax = ya, thus axa™' =y € N.
(&=). Suppose z = ax then z7! = x"1g7!. then az™' = ax 17! thus az~! € N. |

Definition 9.2.3: Characteristic

N is characteristic in G for any ¢ = Aut(G) such that ¢(N) = N,¢ : N — N. Denoted by N charG

Lemma 9.2.1
If N is a characteristic subgroup of G, then N < G.

Lemma 9.2.2
The center of G is charG.

Proposition 9.2.2
If N € G, then the right cosets are well-defined.

Proof of Prosition 9.2.2: Use Lagrange’s Theorem.

ord(G)

G H] = ord(H)

Definition 9.2.4: Quotient Group

Let G/N be the set of cosets of N in G such that {gN : ¢ € G}

9.3 Homomorphisms and Isomorphisms

Definition 9.3.1: Center

Z(G)={xeG:xa=axVaeG}={xeG:xax ' =aVaeG}= ) Cgla).
aeG

Note that the centralizer is only for one element of a: Cg(a) := {x € G : xa = ax}
Z(G)< G

Theorem 9.3.1
Suppose G/Z(G) is cyclic, then G is abelian thus Z(G) = G.

Proof of Theorem 9.3.1: Denote Z(G) = Z. Let cZ be a generator for G/Z. c is some element in G, where
cZ is the coset. aZ = c'Z and bZ = c/Z for i,j € Z. Thus abZ = c'c/Z =c""1Z = cJ*'Z =baZ. Let a=c'd € aZ
and b =cle € bZ with d,e € Z. Then ab = c'dc’e = c'c/de = c'cJed = (ec')(dc!) = ba. [



Definition 9.3.2: Kernel of Group Functions

Suppose ¢ : G — H is a group homomorphism. Define the kernel of ¢ := {g € G : ¢(g) = 1}

Proposition 9.3.1
ker¢p 9 G. 2. ¢ is injective if and only if ker ¢ = {1¢}

Proof of Proposition 9.3.1: 1 € ker¢ If a,b € G,a,b € ker¢p ¢(a) = ¢(b) = 1 then ¢(ab) = ¢p(a)p((b) =
1-1=1¢@ ) =¢@'t=1"1=1
Suppose g € G, x € ker ¢, thus ¢(gxg™") = ¢(9)P(x)p(g™") = p(gg™") = 1. Thus gxg™! € ker ¢. [

Theorem 9.3.2 First Isomorphism Theorem

Suppose ¢ : G — H is a group homomorphism, which may or may not be injective. Let k = ker ¢». Then
G/K = Im(¢). Let ¢ : G/K — H be defined by ¢(gk) = ¢(gk). Then ¢ is a well-defined injective
homomorphism whose image is Im(¢).

Proof of Theorem 9.3.2: Let G be a Group.
¢ : G — H is a group homomorphism

K=ker¢p ={ge€G:p(g) =en}
K < G and G/K = Im(¢)
So if ¢ is surjective then G/K = H [

Let f : G/K — Im¢ such that f(gk) — ¢(g) is a well defined isomorphism.

Theorem 9.3.3
g — ¢y is a homomorphism from G to Aut(G).

Proof of Theorem 9.3.3: Let a,b € G. Need to check that ab +— ¢,Pp then pyp — @Pa¢p. Let x € G, then
Qap(x) = abxab™!
abxb™ta™!

11(1);,(3()11_1

= (Pa © (Pb(x)

What is ker ¢ 7
ker p ={y € G| ¢g(x) =x Vx € G}

={yeGlgrxy'=x VxeG}
={yeG|lyx=xy VYxeG}
=2(G)

— center of G []

Corollary 9.3.1

G/Z(G) = Inn(G)

inner automorphisms of G by 1st isomorphism theorem.

Proof of Corollary 9.3.1: 1If G is abelian, then Z(G) = G and Inn(G) = {ID}. If G = S,,n > 3 then
Z(G) = {1} so G = subgroup of Aut(G). Thus Inn(G) < Aut(G). [



Theorem 9.3.4
Suppose N < G,K < N,K 9 G then N/K < G/K and (G/K)/(N/K) = G/N

Normal is not transitive. Suppose
N2Gand KIN=»KJG

G=Z3+N=6Z,K=127Z

Ka4N<G,K<G

G/N =7/6Z = Zs
it is possible for then to be true but K ¢ G N/K = 62/127. = Z»

G/K=7]127. = 7.5

(G/K)/(N/K) =Z12/Z2 = Zs

so G/N = (G/K)/(N/K)
Proof of Theorem 9.3.4: Define ¢ : G/K — G/N by ¢(gk) = gN  for g € G Check well defined Suppose
aK =bK [ Show aN =bN] So b 'a € K< N sob~'a €N thus aN = bN.

Show Ker(¢) = N/K Suppose gk € ker(¢p) sogN =N &= y e N,s0gKe N/KSop(gK)=gN =N =N
Thus all gk are elements of ker(¢). = N/K < ker(¢).

Show ¢ surjective Let gN € G/N, gK € G/K gK 2 gN Use 1st isomorphism theorem (GK)/Ker¢p = G/N
So every output gN has as input gk € G/K <=  (G/K)/(N/K) = GN ]

Theorem 9.3.5 4th Isomorphism Theorem
Suppose N < G then there is bijection between subgroups G/N and subgraphs of G containing N

Proof of Theorem 9.3.5: (= ). Suppose H < G Define T = {hN | h € H} Check that T < G/N
1eH=G/N=NeT Identity v. If hy, ho € H
(h1N) (haN) = (h1hg) N Closure under multiplication. v/
If h € H (hN)™' = h™'N € T Closure under inverses v so (h"!N) = (InN)™".
(). Suppose T < G/N Define H={h € G| hN € T} Check that H < G 1 € H because 1IN € T
If hy,he € H then h1N,hoN € T (h1N) (haN) because T group So (h1hoy) N € T = hihy € H1If h € H,
then hN € T (hN)t €T b/c T group = h"'NeT = hteH |

These maps are also inverses of one another. If we start with H < G then T = {hN : h € H}. Then we
have T — H. If we start with T < G/N thenlet H={h € G: hN € T} thus H — T.

Proposition 9.3.2
Under these maps H 4G & T < G/N.

Proof of Proposition 9.3.2: (= ). Let xN €T gN € G/N = gNxNg !N =¢x¢"'NeT =T <aG/N
(). Let T < G/N,xN € T. Let x € H,y € G and (gN)(xN)(¢"*N) € T because T group. Thus
(gxg™" )N €T and gxg™* € Hso H 9 G. n

Definition 9.3.3: Simple Group

Suppose G group and {1} # G. G is simple if and only if N < G implies N = G or N = {1}.

Theorem 9.3.6
If G abelian and simple, then G = C, with p prime.




Proof of Theorem 9.3.6: Since G is abelian and simple, then there are no proper subgroups. Suppose a € G
and 1 # a, then {(a) = G due to the simple group structure. Thus G is cyclic. We claim that G # (Z, +) due to
(Z,+) having many proper subgroups. Thus G = C,,.

Suppose n is composite, Ik such that k|n, then (a¥) « G = (a), thus (a*) is normal and not equal to G.
But then G is not simple with this conclusion, thus a contradiction arose. Thus n prime. Hence G = Cp, p prime.
|

What does it mean when a graph is not simple? It will have a proper normal subgroup. Suppose G not
simple, then 1 # N «G. Thus G/N is not simple and can **1ift** any proper normal subgroup of G/N to G.
Now the correct thing to ask is what does lift mean...

Definition 9.3.4: Lift A

By the 4th Isomorphism Theorem, there is a bijection between T < G/N to H < G. We lift T by assigning
T to its corresponding H.

Definition 9.3.5: Jordan-Holder Series [Composition Series]

If N is simple, we can find further proper subgroups of G contained in N. Do this process backwards:

proper normal subgroup of G — proper normal subgroup of G/N = M

proper normal subgroup of (G/N)/M — ...
Eventually we run out of proper normal subgroups. This process creates a sequence of subgroups
{1} €G1 €G3 £G3<...€G, £G

with G; € Gj;+1 both simple. This sequence is called the JH-Series.

Example 9.3.1

G = CG = C3 X Cy then Nj = C3 X {].} < G and Ny = {1} X Cy € G. Thus G/N1 = Cqy and G/NQ = Cg.
Have 2 composition series, and composition factors, {1} < N; < G. since {1} 9 N5 < G have the same
composition factors Cy, C3: No/{1} = C3,G/Ns = C3 and N;/{1} = C3,G/N; = C».

9.4 Simplicity of A,

Theorem 9.4.1
If n > 5 then A, is simple.

Proof of Theorem 9.4.1: Outline of Pf. 1. A,, is generated by the 3-cycles such that every product of A pair
of transpositions is a product of 3-cycles or a 3-cycle.

2. Suppose N < A, with (123) € N, then N has every 3-cycle.

3. Suppose n > 5, and 1 # N < A,. Prove that N has a 3-cycle that has some ¢ € N,1 # ¢. By disjoint cycle
decomposition in A, suppose 0 = (123...7)(...)(...) for r > 4, pick some 7 that only moves 1...r such that 7
is a 3-cycle: totlot =1(1...r)00...7700...(r...321) = t(123...r)t " (r... 321).

Let T = (123). Then (123)(123...7)(132)(r...321) = (231456...7)(r...654321) = (124)(3)(5)--- = (124) € N
Thus N = A,,.

Suppose 1 # N < A,,. We have shown that every cycle is a product of three cycle or a three cycle itself.
Given (abc) € N then N = A;,. Let 0 = ()() be a product of cycles, atleast one of them are length of atleast 3
€ N which implies N = A,,.

Then the remaining cases are ¢ € N and the cycle structure of ¢ which consists of 2-cycles and 3-cycles.
Then o2 only has 3-cycles. Then we can assume that only 2-cycles or only 3-cycles



Every element of A, (with n > 3 ) is a product of 3-cycles.
Every element of A, is by definition the product of pairs of transpositions. But every such pair must be of one
of these forms: (ab)(cd) or (ab)(ac) or (ab)(ab). In the first case verify that (ab)(cd) = (adb)(adc), in the second
that (ab)(ac) = (acb), and in the last that (ab)(ab) = (1) = (abc)(acbh). Thus every pair of transpositions is either
a 3-cycle or a product of two 3-cycles. Hence, every product of pairs of transpositions is a product of 3-cycles.

Claim: If N is a normal subgroup of A, (with # > 3 ) and N contains a 3-cycle, then N = A,
Suppose we had a 3-cycle of any standard, for simplicity (WLOG), we choose (123) € N. We have the inverse
being (132) € N and because N is normal then we have that x(132)x~! € N too, by theorem 8.11. Let x = (12)(3k)
and x~! = (3k)(12). Then

x(132)x71 = (12)(3k)(132)(3k)(12) = (12k)

Case 1. N contains all 3-cycles of the form (12k) with k > 3. Verify that every other 3-cycle can be written in
one of these forms: (1a42), (1ab), (2ab), (abc) where a,b,c > 3. By (*) and closure in N,
(1a2) = (12a)(12a) € N;
(1ab) = (12b)(12a)(12a) € N
(2ab) = (12b)(12b)(12a) € N;
(abc) = (12a)(12a)(12¢)(12b)(12b)(12a) € N.
Thus N contains all 3 -cycles, and, hence, N contains all products of 3-cycles by closure. Therefore, N = A,

by previous Lemma. Case 2. The inverse of the cycle (aiasa3---ay) is the cycle (ajarak-1 ---asas). You can
easily verify this. [

Theorem 9.4.2
For each n # 4, the alternating group A, is a simple group.

9.5 Exercises

Example 9.5.1 (Exercise 1)

If G is a group of order 25, prove that either G is cyclic or else every nonidentity element of G has order 5.

Example 9.5.2 (Exercise 2)

If G is an abelian group of order 2n, with n odd, prove that G contains exactly one element of order 2.

Example 9.5.3 (Exercise 3)

(a) If @ and b each have order 3 in a group and a? = b2, prove that a = b. [Hint: What are a~! and b~ 7]
(b) If G is a finite group, prove that there is an even number of elements of order 3 in G.

Example 9.5.4 (Exercise 4)

If a prime p divides the order of a finite group G, prove that the number of elements of order p in G is a
multiple of p — 1.

Example 9.5.5 (Exercise 5)
If G is a group, prove that every subgroup of Z(G) is normal in G.

Example 9.5.6 (Exercise 6)

Prove that for any group G, the center Z(G) is a characteristic subgroup.



Example 9.5.7 (Exercise 7)
If K is a normal subgroup of order 2 in a group G, prove that K C Z(K). [Hint: If K = {e, k} and a € G,
what are the possibilities for aka™! 7]

Example 9.5.8 (Exercise 8)

(a) Let N and K be subgroups of a group G. If N is normal in G, prove that NK = {nk | n € N,k € K}
is a subgroup of G.
(b) If both N and K are normal subgroups of G, prove that NK is normal.

Example 9.5.9 (Exercise 9)

If K and N are normal subgroups of a group G such that K NN = (e), prove that nk = kn for every
neN,keKk.

Example 9.5.10 (Exercise 10)

Let N be a subgroup of a group G of index 2. Prove that N is a normal subgroup as follows.

(a) If a ¢ N, prove that the coset Na consists of all elements of G that are not in N.

(b) For each a € G, prove that a™!Na € N and apply Theorem 8.11. [Hint: If 2 ¢ N and n € N,a " 'na is
either in N or in Na by part (a). Show that the latter possibility leads to a contradiction.]

Example 9.5.11 (Exercise 11)
Let H be a subgroup of order 7 in a group G. If H is the only subgroup of order n, prove that H is normal.

Example 9.5.12 (Exercise 12)

Let G be an abelian group and T its torsion subgroup (see Exercise 19 of Section 7.3). Prove that G/T
has no nonidentity elements of finite order.

Example 9.5.13 (Exercise 13)

Suppose that G is a simple group and f : G — H is a surjective homomorphism of groups. Prove that
either f is an isomorphism or H = (e).

Example 9.5.14 (Exercise 14)

Let G be an abelian group.

(a) Show that K = {a € G| | a |[< 2} is a subgroup of G.

(b) Show that H = {x2 | x € G} is a subgroup of G.

(c) Prove that G/K = H. [Hint: Define a surjective homomorphism from G to H with kernel K.]

Example 9.5.15 (Exercise 15)
Prove that (Zx2Z)/{(1,1)) = Z. [Hint: Show that f : ZXZ — Z, given by f((a, b)) = a —b, is a surjective

homomorphism.]

Example 9.5.16 (Exercise 16)

SL(2,R) is a normal subgroup of GL(2, R). Prove that GL(2, R)/SL(2,R) is isomorphic to the multiplicative
group R* of nonzero real numbers.



Example 9.5.17 (Exercise 17)

(Second Isomorphism Theorem) Let K and N be subgroups of a group G, with N normal in G. Then
NK ={nk|n € N,k € K} is a subgroup of G that contains both K and N.

(a) Prove that N is a normal subgroup of NK.

(b) Prove that the function f : K — NK/N given by f(k) = Nk is a surjective homomorphism with kernel
KNN.

(c) Conclude that K/(N N K) = NK/N.

Example 9.5.18 (Exercise 18)

Prove that no subgroup of order 2 in S, (n > 3) is normal.
Use : The center of S;; (n ¢ 2) is the identity subgroup;

Example 9.5.19 (Exercise 19)

Let N be a subgroup of S,, such that o7 = (1) for all nonidentity elements 0,7 € N. Prove that N = (1)
or N is cyclic of order 2. [Hint: If N # (1), let ¢ be a nonidentity element of N. Show that ¢ has order 2.
If 7 is any other nonidentity element of N, show that o = 7.]

Example 9.5.20 (Exercise 20)

If N is a normal subgroup of S, and N (A, = A, prove that N = A, or S,,. [Hint: Whyis A, C N C 5,7
Use: Ay is a subgroup of S, of order n!/2 and Lagrange’s Theorem



Chapter 10

Topics in Group Theory

10.1 Direct Sums and Finite Abelian Groups

Definition 10.1.1: External Direct Product

Let H,K be groups. G = HX K = {(h,k) : h € H,k € K}, G group. H={h1) :heH <G
K ={(1,k) : k € K} In fact the intersection H (K = {(1, 1)}.

Theorem 10.1.1

Suppose G is a group and two subgroups H, K < G. When is G actually isomorphic to the direct product
of H and K.

Proof of Theorem 10.1.1: Define HK = {hk}. If H, k 9 G, then HK is a group (Exercise). [

Theorem 10.1.2

If G = HK and H (K = {1}, then G = H X K. Defined the Internal Direct Product since it is isomorphic
to G.

Definition 10.1.2: Disjoint Group

If HN K is disjoint, then H (K = {1}.

Proof of Theorem 10.1.2: Define ¢ : H X K — G defined by ¢(h, k) = hk. Since G = hk, ¢ is surjective.
Let (hl, kl), (I’ZQ, k2) € HxK.

O[(h1, ki)(ha, ko)] = @[(h1ha, kiko)]
= (h1ha)(kik2)
= (hik1)(h2k2)
= ¢[(h1, k1)lg[(h2, ka)]
Thus ¢ is a homomorphism.
Let ker(¢p) = {(h,k) : hk = e}. If hk = e then h = k™! and k = h™!. So k € H and h € K, so

k,h e HNK = {1} then k = h = 1. So ker(¢) = {(1,1)}. A surjective homomorphism and trivial kernel implies
injectivity. [ ]

Example 10.1.1 (Example 1.)
G = (n = 2x),ord(x) = n.
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Proof of Example 1.: Suppose n = ab,ged(a,b) = 1. Let H = (x?),H = Cp,K = (x")K = C,. If x" e HNK,
then a|r and b|r. Then r = ai and r = bj for i,k € Z. Since r is a multiple of a and b, then n|r, then x" = 1. So
HNK={1}.

If r e Z and r = sa + tb, then

X = xsu+tb
— xsuxtb
= (PR,
then x? € H and x? € K. Thus x” € HK for all r and G = (x). Hence G = HK. [

Definition 10.1.3: Direct Sum

When G is an additive abelian group, the direct product is then called a direct sum.

Theorem 10.1.3 Fundamental Theorem
If ord(G) < o0, G abelian, then

1. G227y, 6Zn, & & Zy,;
7k k 1 )
2. G=Zl oZ 0Z), .. .;

3. G=Z4, ®Z4j,® - ®Z4,. With pf.‘ being elementary divisors and d; are invariant factors.

Proof of the Fundamental Theorem: (2) = (1) is easy.

(2) = (3) happens because gcd(m,n) = 1, then Z,,, = Z,, ® Z,. Thus by previous clause, (4) = (3).

(3) = (4), Use the following algorithm: Ex. G=Z; ®Z, & Z, D Z3 ®Z3 & Zs.

Primes: 2,3,5

2235 — 60 =d3

2o @y @l D L3 ®L3DZs5. 22 31>12=d,

Zo®Zy®Z3.211—>12=4d,

(1) = (4). Suppose x1,...,x, generators. Map Z" =Z & Z & ...Z — G such that ¢; — x;. Let e; =
(1,0,0,...,0)e2=(0,1,0,...,0),...,e, =(0,0,0,...,1). Every y € Z" can be written as y = yie1+- - -+yne, € Z.

n
Map y — D y;ix; is surjective. Prove that its a homomorphism. If K = ker ¢, then Z"/K = G by the first
i=1

isomorphism theorem. ]

Definition 10.1.4: Free Abelian Group

G is a free abelian group if it has a basis.

Recall from Linear Algebra:
Base for Z is ey, ..., e, which generates and is linearly independent.

Lemma 10.1.1
Every subgroup of Z" has a basis.

A direct product and direct sum are similar as basis but for groups.

Theorem 10.1.4

We have {fi,..., fu} as a base for K if for all k € K,K = } a,f; for all a; € Z. And also if }a;f; = 0
implies a; = 0 for all i.

We want to show that every element k can be written as a linear combination.



Proof of Theorem 10.1.5: Induction on n. Base Case: n = 1 Every subgroup of Z! is cyclic and generated
by d € Z. 1If k # {0} is a subgroup of Z, then d # 0, then {d} is a base for K < Z. Let K =Zd = {xd : x € Z}.
So every subgroup of Z has a base.

Baby Induction: n =1 = n=2. Let n = 2. K < Z? = Ze, +Ze,. If K < Zey, done. Since n = 1 is true.
Assume not. Let H={beZ:3y €Z,(y,b) = ye; + bes € K}. If K £ Zey, then H # {0}. So H=7d,d # 0. So
H<Z.

So there exists y1 € Z such that yieq + des = (y1,d) € K. Let fo = (y1,d). KN Ze1 = (y,0) € K. If
K\ Zey = {(0,0)}, then not in base. Otherwise it has base (a,0) = f1. [

Lemma 10.1.2
(f2) is a base for K. 2) (f1, f2) is a base for K.

Proof of Lemma 10.1.2: Let k € K span all K such that k = zjeq + z2e2 = (21, 22) € K. Then z, € H. Then
H is generated by some integer d. So zo = dky, ko € Z. Then

k —kafo = (z1,22) — ka(y1,d)

=(z1 - k2y1,22 — kod)
=(z1 - k2]/1/ dko — kod)

= (Zl —kgyl,O) € KﬂZel

k—kofy = 0 when f1 = (0,0);
22 kifi else

So

k:{bh
kifi +kofo

In both cases, the vectors span K.

In order to check for linear independence, we can easily see that case one is obvious since there is only
one vector. For Case Two: Let fi = (a,0), f2 = (y1,0). If a1f1 +azfo = (0,0). (a1a,0) + (a2y,a20) = (0,0).
(a1a + azy, a20) = (0, 0).

Then d # 0, so a0 = 0 implies a5 = 0.

If a #0,a2 =0, and a1a + azy = 0 implies a; = 0. So a1 f1 + asfo = (0,0) implies a; = a = 0. So linearly
independent in case two. u

10.2 Group Actions

Let G be a finite group and let A be a set. G acts on A if there is a homomorphism G — sym A.

Definition 10.2.1: Left Translation Group Action

The most general group action is G acts on itself by left translation (Cayley Homomorphism) (g — ¢y :
({bg(x) = gx)

In general G acts on A by left translation if for ¢ € G and a € A, there is an element g -a € A such that
1-a=aand (gh)-a= g(ha)

Definition 10.2.2: Right Conjugation Action

g€ G, ae€A. Thereis a8 € A such that a' = a and a8" = (a8)".




Definition 10.2.3: Left Conjugation Action

g €G,a€A. Thereis 8a € A such that 'a = a and ghg =
h3a).

Definition 10.2.4: Orbit A

Suppose G acts on A by left translation. Let a € A, then the orbit of a under the action is {g-a : g €
G} =:0(a)

Lemma 10.2.1
Cayley action G on G, then the orbit is all of G.

If the action is right exponential, then O(a) = {a¥ : g € G}.
If G acts on itself by right conjugation, then O(a) = {gxg™! : ¢ € G} = conjugacy class of x € Cy.
If G is abelian then Cy = {x} for any x.

Example 10.2.1
If G = S3 Cz) = {(12), (13),(23)}. G = Cy U Ciz) U Ci23)

If G acts on A then we can define a relation on A such that a ~ b if a,b are in the same orbit by left
translation and right exponentiation.

Definition 10.2.5: Stabilizer

Suppose G acts on A. Let a € A, then the stabilizer of A under the action: left translation : {g € G :
g -a = a} and; right exponentiation : {g € G : a8 = a} denoted by ¢a.

G acts on G under conjugation then the stabilizer is infact just the centralizer of G on x.
Theorem 10.2.1 Orbit-Stabilizer Theorem

1. H =¢ (a) € G;
2. [G: H] = ord(O(a))

Proof of the Orbit-Stabilizer Theorem: (1). If a € A and a' = a, so 1 €g (a). If ¢,h € (a), then
as8h = (a8)" = a" = a. So gh € (a) So (a) < G. Suppose g € (a) then a8 = a, then (a8)8" =a88 " =al =a=as"".
So g7t € (a).

(2). Find a bijection. Let H cosets in G = G \ H. Then declare a bijection from Hg «— a8. We need to
check Hg, = Hgy &= a8' =a$>. Then gog7' € H & a%81 =q & (%281 )8 =081 & a®> =4a". u

Definition 10.2.6: Class Equation

Let G act on itself by conjugation. G is the union of its disjoint conjugacy classes. Suppose these have

representatives z; = 1,29,...,2k, X1, X2,...,X;. Let z; be the center of G.

Let ord(Cz,) = 1 and ord(Cy,) > 2. Class Equation for G: ord(G) = ord(Z(G)) + ord(Cy,) + ... + ord(Cy, ).
T

Or let ord(Cy,) = [G : Cg(x1)], then ord(G) = ord(Z(G)) + X [G : Ca(xi)]

i=1




Example 10.2.2
Suppose P is a group, then ord(P) = p", p prime, then Z(P) # {1}.

r
Proof of Example: From Class Equation: ord(P) = ord(Z(P)) + X [P : Cp(x;)]. If:
i=1

n

p
P:Cp(xi)] = —P—— > 2
Pl = S
=p",r>0
then p|[P : Cp(x;)] for all i. Which implies that p|Z(P) implying that ord(Z(P)) # {1}. [ ]

10.3 Sylow Theorems

Theorem 10.3.1 First Sylow Theorem

Suppose ord(G) < o and p|ord(G), then p” is the highest power of p dividing G then 3P < G such that
ord(P) = p" called the Sylow P Subgroup.

Example 10.3.1

Given G =S4, Sylow Theorem One says p" | ord(S4) = 24. Then there exists P, Q with ord(P) =8 if p =2
and ord(Q) =3 if p = 3.

Proof of Example: With p = 3, 3 | 24 and there must be classes 3 4 ord(Cy,. Fine one: ord(Cy;) = 8 with
x; = (123). Try and find ord(Cg(x;)) for x; = (123). If p 1 ord(Cy,), then p" | ord(Cg(x;)). Why?

ord(G)

ord(CG(Xi)) = ord(Cx-).

With p =2
3= ord(Cluzan) 8 = ord(Ccl(12)(34)]) .

Example 10.3.2
Given G = Sy, then Z(G) = {e}. The possible cycle structures given by partitions of 4:

4=4 = (1234)
4=3+1 = (123)(4)
4=2+2 = (12)(34)
4=2+1+1 = (12)3)(4)
4=1+1+1+1 = (1)(2(3)4)

How many distinct conjugacy classes are there? We need to keep in mind that 2-cycles may look different
but still the same.

Proof of Example: (34)(12) = (12)(34). We do not want this example above as separate conjugacy classes due



to abelian.
4

ll

4'/4=6

(4)~3!/3:4(2):8

3

241+1 = () 6
= 1

1+1+1+1

3+1

l

242 = ( /2=3

4
2
4
2

The right hand side if you have not noticed is the order of the conjugacy classes. We can add these together to
get 6+8+3+6+1=24, where 1 = ord(Z(G)) and 6 +8+3+6 =[G : Cg(x;)]. [

Theorem 10.3.2 Cauchy’s Theorem
If p | ord(G), then G has a subgroup under p.

Proof of Cauchy’s Theorem: By induction of order G, let @ € G and 1 # a4 and p | ord(G). If p | ord(a) = #,
then a"/P has order p, implies there exists a group with order p. Suppose p { ord(a), then p | ord(G/{a)) < ord(a).
By Induction b = b{a), there exists b € G with ord(b) = p. We claim that p|ord(b).

(b) x(a)
b) < > (@
(b) N <a)
Based on the second isomorphism theorem. (b) x (a)/{a) = (b)/(b) N (a). So p | ord(b) = m. So b"™/P has
order p. [ |

Example 10.3.3
If G=54. Then 24=1+8+3+6+ 6. Made up of (1) + (123) + (12)(34) + (12) + (1234).

Proof of Example: Case 1. If p|ord(Z(G)), then Z(G) has a subgroup N of order p. This is by Cauchy’s
Theorem for Abelian Groups. If ¢ € G and n € N, then gng™' =n € N. So N < G. Mod out by N. Then let
G = G/N such that ord(G) < ord(G), then p"~! || ord(G). So by Induction Hypothesis G contains a subgroup T
of order p"~!. By the fourth isomorphism theorem: ord(H) = ord(N)ord(T) = p - p"~! = p".

Case 2. Suppose p 1 ord(Z(G)). Since p|ord(G), if p|[G : Cg(x;)] for all i, then p|ord(Z(G)) = ord(G) \
;
2.[G : Cg(xi)], but p + ord(Z(G)). So there exists an i, such that p 4 [G : Cg(xi)] = %. So p"|ord(G) =

i=1
ord(Cg(x;)) * [G : Cg(x;)], thus p™ || ord(Cg(x;)) where ord(Cg(xi)) < ord(G). By induction hypothesis Cg(x;)
has a subgroup P < Cg(x;) of order p",P < G. [

Theorem 10.3.3 Second Sylow Theorem

All Sylow-p’s are conjugate in G. lLe. if P,Q < G, then both Sylow-p’s there exists g
inG sucht hat Q = P$ = gPg™' = {gxg™ ' : x € P}.

Theorem 10.3.4 Third Sylow Theorem

The number of Sylow-p subgroups of G =1 mod p and equal to [G : Ng(p)] where p is any Sylow-p. So this
number divides [G : P] where Ng(p) :={g € G: gxg~' € P,Vx € P} and [G : P] = [G : Ng(p)][Nc(P) : P].




Let P be a Sylow-p. Let S := {P€ = {gxg¢™' : x € P}}. G acts on S by right exponentiation such that

g:P ﬁ P$ and 1: P — P' = P. Then P8" = {ghx(gh)™ : x € P} = {g(hxh™")g~' : x € P} = {gP"8"" : hxh™' €
P = (Ph)s.

Orbit under G of this action is S. Size of the orbit is ord(S). The stabilizer of P is {g € G : P§ = P} =
{g € G: gPg™' = P} = Ng(P) < G. Then the Orbit-Stabilizer ord(S) = [G : Ng(P)]. Since ord(G) = [G :
N¢g(P)]ord(Ng(P)). Then |[Ng(P) = [Ng(P) : P]ord(p) = p™. So p 1 ord(S).

Goal. Let Q be any Sylow-p prove Q is one of these P8 i.e. Q € S.

What are the sizes of orbits? If T = P" € S, (h € G). Then ord(T) = ord(P) = p". Then P" = ord(hPh™') =
ord(P). THen the size of orbit under action of Q, ord(Q) = p". [Q :o (T)],o (T) = the stabilizer in Q of T under
this action.

Each orbit must then have size p* for some k since p { ord(S) not all k > 1. Atleast one k = 0.

Goal. k=0if and only if Q =T.

Lemma 10.3.1
If Q, T are both Sylow-p’s , then o(T) = Q if and only if T = Q.

Proof of Lemma: o(T)={g€G:T8=T}=Q(\Nc(T)=N. Let T <N.

\ / T
HNT
Note that p + {H,HN T} thus p { ord(HT/T)
N
QT
Q < > T
QnT
Then QNT =Q. Hence Q =T. [

Theorem 10.3.5

Suppose ord(G) = 29 and g odd prime and G not abelian, then G = (H < S;) = g-cycle and an element of
order two.

Proof of Theorem: Given ord(G) = 2q, G has a sylow-2, say (x) with ord(x) = 2. The number of Sylow-2
groups which is not 1 divides %(G) = gq. So there are q Sylow-2 groups. Say Py = (x1), P2 = (x2),..., Py = (x4)
with x; distinct elements of order 2. We define ¢ : G — Permutations of {x1,...,x;} = S;, defined by g — ¢g
such that ¢g(x;) = xlg = ¢x;g~'. The kernel of ¢ is trivial, which implies ¢ is an isomorphism. So there exists
an isomorphism G — the subgroup of S; with order of 24. [



Example 10.3.4
Let g € G,ord(g) =q. Let x; = x,x2 = x‘lg,xg = xg,...,xq = x§_1,x1 = xg. g is mapped to the g-cycle,

which x is mapped to elements of order 2. Thus it is isomorphic to the dihedral group.

Example 10.3.5 (Why is the kernel trivial? Claim: K = ker ¢p = {1}.)

ord(K) # 2¢ nor is ord(K) # g or ord(K) # 2. If y € K,ord(y) = 2. Thus yx; = x;y for all x; in Zy X Z.
This creates a subgroup of order 4. There cannot exist order 4 since 4 + 24q. So there is no y € K with
ord(y) = 2. Hence ord(K) # 2.

10.4 Exercises

Example 10.4.1 (Exercise 1)
Let K be a subgroup of Z®Z. Let H={b e€Z |3y € Z,(y,b) € K}. Prove that H is a subgroup of Z.

Example 10.4.2 (Exercise 2)
Let G be an abelian group and T the set of elements of finite order in G. Prove that

(a) T is a subgroup of G (called the torsion subgroup).
(b) Every nonzero element of the quotient group G/T has infinite order,

Example 10.4.3 (Exercise 3)

How many isomorphism types are there of abelian groups of order 327 Write down a representative for
one of each isomorphism type.

Example 10.4.4 (Exercise 4)
Find the invariant factors of Zy @ Zy & Zis & Zg & Zs & Zs.

Example 10.4.5 (Exercise 5)

Let G = A5.

(a) Find a representative for each conjugacy class in G.

(b) How many elements are there in the various conjugacy classes?

(c) What is the size of the centralizer of each of your elements in (a).
(d) What is the class equation for G?

Example 10.4.6 (Exercise 6)

Let K be a Sylow p-subgroup of G and N a normal subgroup of G. If K is a normal subgroup of N, prove
that K is normal in G.

Example 10.4.7 (Exercise 7)

Let N be a normal subgroup of G,a € G, and C the conjugacy class of a in G.

(a) Prove that 4 € N if and only if C C N.

(b) If C; is any conjugacy class in G, prove that C; SN or C; NN = @.

(c) Use the class equation to show that |[N| = |Cy| +---+ | Cx |, where Cy, ..., Ci are all the conjugacy
classes of G that are contained in N.



Example 10.4.8 (Exercise 8)

If N # (e) is a normal subgroup of G and |G| = p", prove that N N Z(G) # (e). [Hint: Exercise 7(c) may
be helpful.]

Example 10.4.9 (Exercise 9)
If K is a Sylow p-subgroup of G, prove that N(N(K)) = N(K).

Example 10.4.10 (Exercise 10)

If |G| = p", prove that G has a normal subgroup of order p"~1. [Hint: You may assume Theorem 9.27
below. Use induction on #n. Let N = (a), where a € Z(G) has order p (Why is there such an a ?7); then
G/N has a subgroup of order p"~2; use Theorem 8.24.]

Example 10.4.11 (Exercise 11)

Prove that there are no simple groups of order 30.

Example 10.4.12 (Exercise 12)

Let K be a Sylow p-subgroup of G and N a normal subgroup of G. Prove that KNN is a Sylow p-subgroup
of N.



Chapter 11

Galois Theory

11.1 Field Extensions

Refer to Chapter 7.2 for all of the theory on Field Extensions. We will be continuing this on behalf of learning
Galois Theory.

Definition 11.1.1

Given u € IE 2 IF, F(u) is the intersection of all subfields of [E containing u.

F(u) = ﬂ

ueEE;CE

is a field containing u, which is the smallest field extension of IF containing u. I.e. If K is afield, then
F c K, u € K, then F(u) C K

Thus if u is algebraic over F, then F[u] is a field extension of F,u € F[u]. Hence F(u) C F[u] Let
f(u) € Flu], then f(x) € F[x]. Then it is always true f(u) € F(u), which has to contain every polynomial in u.
Thus Flu] € F(u).

Let f(x) € F[x]. If p(x) is an irreducible factor of f(x), then ]::([—;C; is a field containing IF (really a copy
consisting of classes of constant polynomials) Which has a root of f(x) namely a is equal to the class of x. Ex.
f(x) = x% =2 in Q[x], then Q[ [V2] = x2 2) Thus V2 cooresponds to the class of x. Map Q[x] — Q[V2] defined
by f(x) |—>f(\/_), thus x — V2.

Flx]

Then p(a) is equal to the class of p(x), but since we mod’d out by p(x), that is equal to 0 € )"

Theorem 11.1.1

Let f(x) € IF; where f(x) is irreducible factor of p(x). And K; )] is a field extension of IF; such that
f(x) hsa a root of @ € Ky. Where « is the class of x € Kj.

Suppose ¢ : F; — [F; is a field isomorphism, then of(x) € Fa[x]. If f(x) = ap + a1x + ... + a,x" where
a; € Fy, then of(x) = a(ag) + ... + o(a,)x" € Fo[x]. Which is irreducible p(x) € ]Fl[ ] — op(x) is
irreducible in Fa[x]. Let u € Eq, and u is a root of p(x) € E;1. Suppose v is a root of op(x) € Fa[x], then
there exists G : IFy(u) — F3(v) is an extension of ¢(G |g,= ) such that o(u) = v.

Proof of Theorem: TFi(u) = E;l(—xx)] = % = [F5(v) defined by u + class of x in IF; «— class of x in Fy «—

v Then O'(l][:l) = 1E,. |

Corollary 11.1.1
The number of such extensions is the number of distinct roots of op(x) in [E,.
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Definition 11.1.2: Splitting Field

A splitting field for f(x) € F[x]is an extension field E of IF such that E[x] f(x) = c(x—a1)...(x—a,),a; € E
factors and E = F(ay,...,ay).

Theorem 11.1.2
There exists a splitting field for f(x) € F[x].

Sketch of Proof: By Induction we will prove this. We know there is a proof of induction on deg(f) = n
and there exists a class of an extension field of IE;, where n = 1 then f is linear. If it is an extension field of

F such that f(x) has a root u € E; (E; = ]:f([—;cg,p(x) irreducible factor of f(x)) in E;[x], f(x) = (x —u)g(x),
deg(g(x)) < deg(f(x)). By induction hypothesis, there is a splitting field for g(x) over E. [

Theorem 11.1.3
Any 2 splitting fields for f(x) are isomorphic.

o
Proof of Theorem 11.1.2: Suppose F; = Fy, where 0 : F; — [, is also an isomorphism. If f(x) € F[x],

then [E; is a splitting field for f(x) over IF and o f(x) € Fy[x] over 5. [E; is a splitting field for %(;). Then o can

be extended to an isomorphism such that ¢ : E; — Es. If F; = F5, then ¢ = e and E; = [Eo, thus splitting fields
are unique up to isomorphism. If f(x) has a distinct root in [Eq, then the number of such extensions is [E; : IF1].

Assume [E; : [F1] > 1. Let p(x) € F[x] be an irreducible factor f(x). Then p(x) has a root r in an extension
field of F. If v is any root of op(x) € Fo[x] Then there exists an extension of ¢ such that oy : F1(r) = F2(v).
Then the number of such F;(r) — E; is deg(p(x)) under assumption that all roots of p(x) are distinct. Note that
deg(p(x)) = [Fi(r) : Fy].

Base Case: [E; : F1] =1, thus f(x) is the product of linear polynomials. Since [[E; : IF1(r)] are extensions
of g, then the number of extensions of ¢ to an isomorphism E; — [Es is [[Eq : F1(#)][F1(r) : F1] = [E; : Fq] =
[Es : F3]. Suppose that & : E; — [z is an extension of o, then if f(x;) = 0, then of(x;) = 0. [

11.2 Galois Theory

Define a homomorphism ¢ : Z — F where 1 —~ 1 and n = nl and n + m = nl+ml and nm — nlml and Im¢
is a subring of IF where the ﬁ = Im¢ where ker ¢ is an ideal of Z if the ker ¢» = {0} then then there is subring
isomorphic to Z where @ is a isomorphism, so a subfield isomorphic to Q.

If char(F) = p then F has a subfield isomorphic to Z, = pZ—Z We say that [F has characterisitc 0 fi it hsa
a kerphi = n in nZZ, then [F has a subring isomorphic to an% since F is a field n must be prime p say F has
characterisitc p.

Definition 11.2.1: Formal Derivative

In f(x) € Flx], f (x) = Df(x) if f(x) = x then Df(x) = nx"~! and extend to F[x] by linearity.

Alternatively in F[x, h] where h is trancendental where g(x, h) = f(x + h) — f(x) where g(x,0) = 0.
By the factor therem h is a factor of g(x, h).

Definition 11.2.2

Df(x) = M evaluated at h = 0.




Definition 11.2.3: Repeated Root

If we have f(x) € F[x] and E is a splitting field for f(x), we say a is a repeated root of f(x), if f(x) =
(x —a)*g(x) in E[x].
If Df(x) has repeated root then f(a) =0, so a is also a root of D f(x).

Given f(x) € F[x] is irreducible and F is an extension field of Q, then E is a splitting field.

If u € E, then f(u) =0, then u is not a repeated root for f(x)

If u € E, then f(u) = 0, then u is not a repeated root for f(x). ie. f(x)= (x—u)?g(x) € F[x] (not possible)

If u is a repeated root, then

(Df)(w) =0

So (x —u) is a factor of Df(x). Also f(x) is minimal polynomial of U over F deg(Df(x)) < deg(f(x)) If
Df(u)=0 = f(x) such that (Df(x)) = Df(x)=0

Assume E is a finite dimensional extension of Q (char. 0) Let F be a subfield of E.

Definition 11.2.4: Normal Extension

F is a normal extension of IF if u € E, f(x) € F[x] is the minimal poly. of u/IF € F[x], then f(x) splits in
E[x].

Any f(x) € F[x] which has a root in E has all its roots in E.

Example 11.2.1

If E is a splitting field for f(x) € F[x], then it is normal /IF:

Given p = e

Q [2%,2%@%] =Q [21/3,p] = splitting field for x3 — 2/Q is normal over Q. But Q [21/3] is not normal /
Q.

Definition 11.2.5: Automorphism

Aut(E) = group of field automorphisms of [E.

Definition 11.2.6: Galois Group

Aut (%) :={o € Aut(E) : 6(a) = a,Va € F} = Gal (%).

Definition 11.2.7: Fixed Field

Let G = Aut (E). The fixed field of G is {u € E: 6(u) = u,Yo € G} = Inv(G)

Note that IF C Inv(G), but it is not necessarily Inv(G) C F.

Example 11.2.2
F=Q,E= Q(2§), and G = Aut (%) = ¢ such that 25 = 23.

Theorem 11.2.1 Fundamental Theorem of Galois

Given % has char 0 and finite-dimensional, then we will prove that all the following is equivalent.

1. Inv (aut (%)) = I
2. F = Inv(G) for some G < aut(E);

3. E is normal to any separable over [F;




4. E is a splitting field of a separable polynomial in F[x];
5. ord (aut (E)) = [E : F]

Proof of FTGT: . We have already shown that (4) = (5). (1) = (2) is obvious since F = Inv(G). Suppose
(3) = (4), then % is finite dimensional thus E = [F[uy, ..., u,]. Let p;(x) € F[x] be the minimal polynomial of
u;/F. Let f(x) be the product of distinct p;(x). Then E is the splitting field for f(x) € F[x].

((2) = (8)).Assume that F = Inv(G) for some G < Aut(E), where ord(G) < co. Suppose E is a field, G is
a finite subgroup of Aut(E). Let F = Inv(G) C E. If u € E and f(x) is the minimal polynomial of u over F, then

f(x) splits E[x].
Let u € E. % is finite, so it is algebraic over F. Let f(x) be a minimal polynomial of u and ord(G) < n.

Consider the orbit under G of u which is equal to the set of distinct o;u, where o; € G, and {u = uy,...,uy}.
Let g(x) = (x —u1)...(x —uy) € E[x]. Let u; = u. We claim that g(x) € F[x]:

Claim. Let 0; € G, then (0;g)(x) = g(x), so o; fixes all coefficients of g(x) expanded for all i. So each
coefficient is in Inv(G) = FF, so g(x) € F[x]. Then g(0) = 0 implies g(x) = f(x). So % is normal. Thus g(x) | f(x)
in E[x] [

Lemma 11.2.1
Let E be an extension field of IF, and let G = Aut (%) and let K = Inv(G), then Aut (%) = Aut (%) =G.

Continued Proof of FTGT: . ((5) = (1)). Now, suppose (5), i.e. ord (Aut (%)) = [E : F]. We need to
show that Inv (Aut (E)) = F. Pf. Let K = Inv (Aut (E)). By lemma, Aut (g) = Aut (E), so ord (Aut (£)) =
ord (Aut (%)) Apply (2) F = Inv(G) for some G < Aut(E) where ord(G) < oo implies (3) implies (4) implies (5),
with K in place of F. We get that ord (Aut (%)) = [E : K]. Thus ord (Aut (%)) = [E : K]. Hence F = K = Inv(G).
|

Definition 11.2.8: Galois

% is Galois any of these conditions above hold.

Theorem 11.2.2
Given G < Aut(E) and K C E, then we have [E : K] < ord(G) < oo.

Proof of Theorem: linearly dependent over K. Write G = {1,V2,V3,...,4/n} and let 1 = ¢. Define an n X m
matrix A such that Ai]' = aj(u,-) € E.

ul l/l2 um
3 o2 (u1) og(uz) --- 02 (t4m)
Gn(ul) on(uz) -+ on(Um) ' s

What do we know about A? Each o(u;) € IE, but ¢j(u;) does not necessarily equal u;. Why? u; € E, not
necessarily an element of K. Then o(u;) = u;,Yo € G iff u; € K. This matrix is rectagular since m > n. The
systems of equations AX = 0 is underdetermined meaning there are more variables than equations. So we have
many (possibly infinite) non-trivial solutions.

Pick a random non-trivial solution with a minimal number of non-zero elements. We can always assume

the solution has the form
1

S
Il

Why can we assume this? We can scale the solution by a constant. We can also permute the variables of A and
still get a solutions. Thus we can permute such that x; is non-zero.



Let Ab = 0. We claim: b € K™. Tn a proof by contradiction, suppose

1
- b2
b=1.

We do we want to show this? If all elements of b € K, then we have an linear combination over KK with constants
b; equalling 0. But at least one b; # 0. So the set {u1,us,...,u;,} is not linearly independent over KK

Then there exists a 0y € G such that o¢(b2) # ba. Define g¢(A) to be the matrix where g¢(A);j = o¢(0j(u;))
and it will apply o, to all elements of A. This will just permute the rows of A. Why? Because o¢ 0 g; = 0, for
some 0, € G because G is a group.

Thus 0¢(A)Z = 0 has the same solution as A¥ = 0. Thus Gg(l-;) is also in the solution set because O[(A)O[(E) =

o;;(AI;) =0¢(0) = 0. If b and CT((E) are in the solution set, then b- 0@(1;) is also in the solution set.

1 1
bo o(b2) 0
. : " |not 0
Hence a contradiction with l; has fewest non-zero elements. So l; e K™, [ |

Another Proof of FTGT: . Suppose E/F is galois, so one of the conditions are true, then G = Aut(IE/FF) =
Gal(E/FF) is the galois group. Then [E/K is galois for any intermediate field K. Let IF ¢ K c [E. Then there
is a bijection between the intermediate fields K and subgroups H < G. These maps are order reversing under
inclusion, i.e. K; € Ky = Auwt(E/K;) 2 Aut(E/K>) and if H; € Hy, = Inv(H;) 2 Inv(H>).

Let K — Aut(E/F) and Inv(H) <« H. Let K :={u € H : 6(u) = u,Yo € H} where ¢ are the automor-
phisms. These maps are inverses to each other i.e. Inv(Aut(IE/IF)) = K and Aut(E/Inv(H)) = H.

If K — Aut(E/F) and G < Aut(E/IF) and K is the set of intermediate fields. Then H — Inv(H) where
Inv(H) is the fixed field of H and H is the set of subgroups of G < Aut(IE/IF). We have a bijection between groups
and fields.

Then K is galois over F if and only if 0(K) = K,Vo € G, if and only if H = Inv(K) < G. In this case
[K : F] = ord(G/H). [

Example 11.2.3 (Galois Groups Fork)

When is K galois over IF? Let F = Q adn E = Q (2%, exp (%) = a)). E is galois because it meats condition
(2). Which means it is splitting field for f(x) = x3 — 2 over Q. What is [K : F]? [Q(w) : Q] = 2.
Aut(E/E
g AE
E=Inv(1)
Aut(E/K)

K < H
K=Inv(H)

Aut(E/F)
F = G
F=Inv(G)
What does these mean? When E/FF is galois, then all these maps have it where starting from K c IF, when
we apply both ways. We always end up at K again!
Now what we have to do is show that H < G by applying both maps resulting in H again! Once we prove
this, we know the maps are inverses.

Continued Another Proof of FTGT: . Given [E/F is galois and F c K C E. By (4), E is a splitting field for
f(x) € F[x] because E/F is galois. Since F C K, then f(x) € K[x] as well. So E is a splitting field for f(x) € K[x]
as well. Thus E/K is also galois.



Let H < Aut(E), ord(H) < oo, then K = Inv(H). By Artin’s Lemma, [E : K] < ord(H) and H < Aut(E)
and K = Inv(H) implying H < Aut(E/K). So ord(H) < ord(Aut(E/K)). Thus E/K is galois, thus by (5), then
ord(Aut(E/K)) = [E : K], so [E : K] < ord(H) < [E : K]. So ord(H) = [E : K] = ord(Aut(E/K)). Thus
ord(H) = ord(Aut(E/K)) and H < Aut(E/K) implying H = Aut(IE/K). Thus K and H are inverse maps. [

Example 11.2.4 (Application of Theorems)

Suppose K is galois over F if and only if ¢(K) = K for all ¢ € G if and only if H = Inv(K) is normal.
Then the splitting field of x® — 2 over Q results in three cosets generated by 25 and w. Thus Q(Q%, w) is
our splitting field. Look at the fields and automorphisms that fix these fields

Q(2%,a}) 1
In Ul
In Ul
Q G

What is the degree of Q(23, w)? We get Q(23, w) from x3 — 2 containing 3 roots. Automorphisms we know
permute the roots, so the size could be up to ord(S3) = 6, but may be smaller.

Let F = (12(2%,60)7 what are the isomorphisms in G? If ¢ : IF — F, then ¢ be conjugation. Thus o(z) = Z.
Then Z + @ = z + w, likewise for multiplication.

Let 0(25) = 25 because 25 € R. Then o(w) = @ = @~} = 2. Then 02@ = ¢(&) = & = w. So 02 = 15.

11.3 Exercises

Example 11.3.1 (Exercise 1)

Let K be a splitting field of f(x) over F. If [K : F] is prime, u € K is a root of f(x), and u ¢ IF, show that
K = F(u).

Example 11.3.2 (Exercise 2)
Find and describe a splitting field of x* + 1 over Q.

Example 11.3.3 (Exercise 3)
Find a splitting field of x* — 2

(a) over Q.
(b) over R.

Example 11.3.4 (Exercise 4)

(a) If f(x) = cx™ € F[x] and g(x) = bo+byx +- - +bxx* € F[x], prove that (fg)'(x) = f(x)g’(x)+ f(x)g(x).
(b) If f(x),g(x) are any polynomials in F[x], prove that (fg)(x) = f(x)g’(x)+ f'(x)g(x). [Hint: If
fx)=ap+aix+---+a,x", then (fg)(x) = apg(x)+ a1xg(x) +--- + a,x” g(x); use part (a) and Exercise
4.]

Example 11.3.5 (Exercise 5)

If f(x) € F[x] and n is a positive integer, prove that the derivative of f(x)" is nf(x)"~!f’(x). [Hint: Use
induction on n and Exercise 5.]



Example 11.3.6 (Exercise 6)

Prove that u € K is a repeated root of f(x) € F[x] if and only if # is a root of both f(x) and f’(x). [Hint:
f(x) = (x—u)"g(x) with m > 1, g(x) € K[x], and g(u) # O, u is a repeated root of f(x) if and only if
m > 1. Use Exercises 4 and 5 to compute f’(x).]

Example 11.3.7 (Exercise 7)
Prove that f(x) € F[x] is separable if and only if f(x) and f’(x) are relatively prime.

Example 11.3.8 (Exercise 8)
Let p(x) be irreducible in F[x]. Prove that p(x) is separable if and only if p’(x) # Of.

Example 11.3.9 (Exercise 9)

Let E and F be fields. Assume that E is a Galois extension of F, so it satisfies each of the 5 conditions
in Galois 1 . Let G = Aut(E/F) be the Galois group of E over F. Let H be any subgroup of G. Let
K = Inv(H). The following problem asks you to give the details finishing the proof of The Fundamental
Theorem of Galois Theory.

(a)Let T € G. Prove that Inv (tHt™!) = 7(K).
(b)Prove that H is normal in G if and only if for every T € G, 7(K) = K.

(¢) Suppose that for every 7 € G,t(K) = K. Let u be an element of K and let f(x) be its mini-
mal polynomial. Prove that f(x) splits in K.

(d)Use parts (b) and (c¢) and Galois 1 to prove that if H is normal in G then K is Galois over F.
State clearly which criterion in Galois 1 for being Galois you are using.

(e)Suppose that for each element u in K, the minimal polynomial of u splits in K. Prove that for
every 7 € G,1(K) = K.

(f)Use parts (b) and (e) and Galois 1 to prove that if K is Galois over F then H is normal in G.
State clearly which criterion in Galois 1 for being Galois you are using.

(¢) Let 0 € Aut(E/F). Let o|g denote the restriction of ¢ to K. In general o|g is clearly a
monomorphism (injective homomorphism) with domain K and codomain ¢(K). Prove that if K is Galois
over F, then oy is in Aut(K/F).

(h) Suppose that K is Galois over F. Prove that the map ¢ — o|g is a homomorphism from the
group Aut(E/F) to the group Aut(K/F).

(i) Suppose that K is Galois over F. Prove that the kernel of the homomorphism o — o|g is
Aut(E/K).

(j)Suppose that K is Galois over F. Use Theorem 11.14:
Let ¢ : F — E be an isomorphism of fields, f(x) a nonconstant polynomial in F[x], and of(x) the
corresponding polynomial in E[x]. If K is a splitting field of f(x) over F and L is a splitting field of o f(x)

over E, then o extends to an isomorphism K = L.

to prove that the homomorphism ¢ — |y from the group Aut(E/F) to the group Aut (K/F) is surjective.
Show clearly how you are using Theorem 11.14.



(k)Suppose that K is Galois over F. Use the previous parts of this problem and the First Isomor-
phism Theorem to prove that Aut (K/F) is isomorphic to G/H.



Solutions to Exercises

Chapter 1

Proof of Exercise 1: We know that 0+ 0= 0. Given a € Z, then:
(0+0)a = 0a
O0a +0a = 0a

Oa +0a—-0a=0a-0a
0a+0a—-0a=0a-0a
0a=0

Chapter 2

Proof of Exercise 1: Let
a=gb+r and 0<r<b.

If ac is divided by bc, then we could multiply all sides by ¢ such that
ac = (gb)c +rc,

then rearrange to so associativity. Then
ac =q(bc) +rc,

thus showing that when ac is divided by bc, we have the remainder rc.

Proof of Exercise 2: Let
ac=qgb+r and 0<r<b.

Suppose g is divided by c results in the equation
q =kc+rs.
Let this value of g replace g in the ac divided by b.

a=(kc+r)b+r
=kbc + bry + 7.

Claim. Since 15 < ¢, then 79 < bc, and since ¥ < b, then we also have that bro + v < bc.

bro < b(c —1), and r < b — 1, thus we have the equation b(c —1)+b —1 < be.

bc—-b+b-1<bc
bc—-1<bc.

Thus we have shown that the remainders can never be greater than bc, our divider.

statement that when a is divided by bc, then the quotient is also k.
90

Thus this satisfies the
|



Proof of Exercise 3: (= ). Given that a = nb+r and ¢ = nd +r, as they have the same remainder, then let

a—-c=nb+r—-nd-r
a—-c=nb-d)+r—r.

Let there exist an integer k = b — d such that a — ¢ = nk. ( & ). Suppose a — ¢ = nk, then we can rewrite this
in the form of the division algorithm such that

a=nk+c

c=ng+r.
Replace the values accordingly:

a=nk+ng+r
=nlk+q)+r.

Since 7 is the remainder for n dividing ¢, and as shown we also have it such that it is the remainder for a. Thus
showing that it is the same remainder. [ |

Proof of Exercise 4.: (= ). Given a = bn, then a = (—b)(—n), which shows that (=b)|a.
(&<=). Given a = (=b)n, then a = b(—n), thus b|a. [

Proof of Exercise 5: Given b =an and ¢ = bm, then ¢ = anm. Therefore ¢ = a(nm), thus a|c. ]

Proof of Exercise 6: Given b = an and ¢ = am, then b + ¢ = an + am. Therefore b + ¢ = a(n + m), thus

al(b + c). [
Proof of Exercise 7: Given b = an and ¢ = am, then br + ct = anr + amt. Therefore br + ct = a(nr + mt),
thus a|(br + ct). [
Proof of Exercise 8: Let b =am and a = bn. Then a = amn, when we substitute in b. Thus mn = 1, and
since we are in the integers, the only divisors of 1 are —1,1. Thus a = +b. [ |
Proof of Exercise 9: Let b =an and d = cm, then bd = ancm. Therefore bd = (ac)(nm), thus ac|bd. [

Proof of Exercise 10: Using the extended ged algorithm:

O=aq+r
Let g =1and r = —a.
0=a(l)—a
a=a(l)+0.
Then the ged of (a,0) is a. [

Proof of Exercise 11: Using the extended ged algorithm, let

n+1=n(l)+1.
Thus we have found that the ged of (n,n + 1) is 1. [
Proof of Exercise 12: Given ¢ =am and ¢ = bn, then a, b are two divisors of c. [
Proof of Exercise 13: Given n € Z,

n+2=n(l)+2
n=2q+r

Case 1: n is even.
Then 2 is the greatest common divisor of (1, n + 2). This is due to 2 being able to evenly divide n.



Case 2: n is odd.

n=2q+1
2=1(2)

Then 1 is the greatest common divisor of (1,7 + 2). This is due to 1 being able to continue the extended ged
algorithm and we find 1 can evenly divide 2.
Thus the only solutions are that gcd(n,n +2) =1 or 2. [

Proof of Exercise 14: By the linear combination of gcd(a,b) = d, we find that ax + by = d. Therefore

Ex+E =1
PR

Thus ged(3,5) =1. n

Proof of Exercise 15: Let ¢ = bn, therefore albn, but since gcd(a,b) = 1, then a|n. Therefore ab|bn, thus
ab|c. [

Proof of Exercise 16: Let ax +cy =1 and bn +cm = 1. Then

(ax +cy)bn+cm)=1-1.
ab(xn) + c(byn + axm + cym) =1
Thus the ged of (ab,c) = 1. [

Proof of Exercise 17: Suppose that a|c and b|c and the gcd(a,b) = d. If the greatest common divisor of a
and b is d, then a and b can be written in terms of d and some integer x,y € Z, and also ¢ in terms of m,n € Z
with a and b, such that

dla & a=dx
dlb & b=dy
alc & c=am
blc < c =bn.

Therefore, given t € Z. when we have the equivalence of ab|cd, we can substitute values into a and b to show
divisibility. Hence
ablcd < cd = abt
< cd = (dx)bt
& cd = a(dy)t

It can also be done the other way by replacing ¢ with some value with a or b:

ablcd < cd = abt
— (am)d = abt
< (bn)d = abt.

Also note that since a and b also divide ¢, since the multiplication of ¢ and d result in some multiple of each
other, a and b can also divide any multiple of ¢, regardless of the statement that d|a and d|b. [

Proof of Exercise 18: Suppose a > 0 and b > 0. Then ab > 0, therefore ab is some common multiple of a
and b, but nothing to show that it is the least common multiple of ab. Suppose there exists m,x,y € Z, then
m|a and m|b, such that m|ab. Thus

mla & a=mx
mlb & b=my
mlab &= ab = (mx)(my)



So there is a common divisor of a and b, which is m. Now suppose that there exists a d such that d|a, d|b, and
d|m, but d < m. Because of this, given some t € Z,

dm — m =dt
Thus,
gcd(a,b) =m = dt.

Now that we have an integer representation of the gcd(a, b), then let us rearrange the problem to satisfy this new
standing:

ab
lcm[a,b] = W
lemla,b] = M
m
lemla,b] = %
Iemla,b] = dtxy
lcmla, b] = mxy
= (mx)y
— x(my).

Given some value for ab and the gcd(a,b), if we are to divide such numbers, then we would get the least
representation of such numbers such that, they are the least common multiple of a and b. If we are to take the
divisors of a and b, which are: m and x, or m and y. Then the least common divisor is equal to the product of m,
x, and y as they make up a and b. This is because it can be rearranged into some multiple of a or b, as shown,
Iem[a,b] = mxy. Hence Icm[a,b] = gC;Tl;,b). [
Proof of Exercise 19: This is something that I spent time focusing personal research on. The prime omega
function, which counts how many primes factors there are for a specified integer, can be restricted to the square
root of that integer, as there cannot be any prime integer greater than | V25 — 1] = 5. Therefore, we can test 2,3,
and 5, and none of them divide 2° — 1 = 31 evenly. Therefore, it is prime.

Similarly, [ V27 — 1] = 11, 2 4 127,34 127,5 4 127, 7 1 127,11 | 127. n

Proof of Exercise 20: 1If the gcd(p,10) = 2, then it must be even thus p cannot be even. And even if it is
not specifically 2, but instead also 4, 6, or 8, then we should note that 2 is still a divisor of such ”prime” above
5, which means the integer must still be even. Thus we can rule out all even remainders. Now consider r = 5, for
some remainder, r. Thus the gcd(p, 10) = 5, which comes to show that p is not prime. [ ]

Proof Of Exercise 21: (= ). If p is prime and a < p, then the gcd(a,p) = £1, £p. Since the only divisors
of p prime is these two factors. If a > p, then gcd(a, p) = p.
(&=).If gcd(a,p) =1, or pla, then this shows that the only divisors of p is in fact, +1 and *p. [

Proof of Exercise 22: Let’s assume that p is not prime. Then p would have some divisors d, t € Z, such that
p =dt.

Then according to our assumption, if p is not prime, then p|d or p|t. Therefore, when p | d, then d = +p and
t =+1. Or when p | ¢, then t = £p, and d = 1. Thus p is prime. [

Proof of Exercise 23: The idea of this question is that there exists an integer d € Z such that

d=pi'py® . pys



where the gcd(a,b) = d. This integer is some common divisor of both a and b, such that each #; is the minimum
count of r; and s;. If we are to see a more literal viewing of this statement, then we can readjust the value of a
as:

ri—ny ro—nz

S A A e S N A
=d(py " py " pE ).

However, how do we know that n; is the minimum between r; and s;. Suppose that there is a divisor g € Z, such
that:
V1,0 v;
q=p1'pP2 Py
Then if v; < min{r;,s;}, then q will not be the greatest common divisor, as there is some divisor that includes
more power in a kth prime. And if v; > min{r;, s;}, then the same powers of a or b will result in p;i_vi, which may
become a negative power, which will create a fractional value instead of an integer prime, thus also not possible.
Therefore v; must be v; = min{r;,s;} = n;. Continuing back with the proof (from a =...), similarly, we can do
the same for b, such that it will contain the common divisors of both a and b. Therefore, the gcd(a,b) =d. =

Proof of Exercise 24: Consider a Icm[x,y], given some x,y € Z, then this lcm will be equal to the lowest
possible multiple of both x and y. In problem 33, we prove that the [cm[a,b] = gc;Tl;,b)’ and this statement further
proves this statement, which we can break up into simpler statements. Since a and b are a product of primes,
then what we do in the numerator of the previous fraction is add all powers of primes together, and then divide
it by the greatest common divisors of each, which will lead to a least common multiple. Since we have proved in
the previous part of this question, the gcd(a, b) is equal to some integer d € Z, such that d contains the minimum
power common divisor in both a and b.

Now that we have broken down the problem into ideas we can actually use, we can proceed to prove the problem.

Given that

a=pypy...py
b=py'ps .. py
ab = pi'pypyey - pipy

1,81, .72 .S2

ab _ Py P PP ~-'Plr<ipii

- ny, Ho ni

gcd(a,b) PPy’
— pl1ts1—ny  Totsa—ng ri+si—n;
=P P2 P

Note that when we subtract n; from 7; + s;, we are left with the maximum of r; or s;. This is because we are
subtracting the lesser of r; and s; from each power, and that means we are left with the other term. To understand
this in simpler terms, let’s suppose that ny = min{ry,ss} = s4. Therefore, the fourth integer in the factorization
will equal p24+s4_54 = pff, and similarly, we can do the same for each of the factors in ab.

Therefore we have just shown that

_ ri+sy—min{ry,s1} ro+sa—min{ra,sa} rs+ss—min{rs,ss} ri+si—min{r;,s;}
lcmla,b] = p; 2 Ps Py

_max{ry,s1} max{ra,s2} max{rs,ss} max{r;,s;i}

=P P2 Ps - Py

byt ti
=pipsPs N
Thus we have reached the conclusion that Iem[a,b] = pi'p2pl ... p]t(i, where t; = maximum of ;, s;. |
Proof of Exercise 25: Suppose that a | b, then given some x € Z
b=ax.
Since this is the case, then we can square both sides and simplify given that y = x?
b2 = g2x2

_ .2
=a%y,



which comes to show that b2 is divisible by a2.

We can show this in the reverse direction to show a bi-conditional iff. Given a? | b? and w, z € Z, then
b? = a’w,

and we can split the factors, and set z = aw, show that,

b(b) = a(aw)
b(b) = az
alb=b
Thus a | b & a?| b2 [ |
Proof of Exercise 26: Given that (Z) = #ik)!’ then we can split this fractions into terms such that p! is
divisible by p.
pt_ (p-1)

Kp -k PR -k

Note that since, (p — 1), k, and (p — k) are all less than p, they are not divisible due to the definition of a prime
and what we proved in Question 21. Note that, (p — 1), k, and (p — k) are integers, and since they are multiples
of numbers that are less than p, then p cannot divide these integers. However, there is a problem, we don’t know

if the fraction k(,’(?p;_l])('), is also an integer. Consider that
pt
Kp -kt
p! = mkl(p - k)!
p(p — D! = mkl(p — k)!
p | mkl(p — k)!
Then p divides m, k!, or (p — k)!, and as we stated before, all but m are less than p, therefore indivisible. And
: !
s1ncep|m,andmzm=(£),thenp| (i) ]
Chapter 8

Proof of Exercise 1: Let SL(2,R) be the set of all 2 X 2 matrices ( Z Z ) such that a,b,c,d € R and the

10

0 1).We

determinate is equal to 1, which is non-zero. We know the identity matrix exists in SL(2,R) > [ = (

1 0
0 1
I is the identity element. Since the determinate is nonzero, there exists an inverse by properties of matrices since
if the determinate is non-zero, then let
PET. ( d -b )
ad-bc\ —¢c a |’

. Which is the identity element, thus proving an inverse. To prove associativity, we

can check this by first checking det [( )] =1, and if A € SL(2,R), then AI = IA = A, which it does. Thus

1 0
-1 _
such that AA™" = 0 1

can show this by determinants. Let A, B, C € SL(2,R)
det(A)(det(B) det(C)) = det(A)(1)
=(D(@)
=1,
(det(A) det(B)) det(C) = (1) det(C)

= (1)(1)
=1,



thus also showing associativity, but if we let A = B = C, then it also shows closure under multiplication. Thus
SL(2,R) is a group. [

. . . 1 2 3
Proof of Exercise 2: Suppose A abelian, denote it (A(l) A2) A(B))'

We can show this by showing examples of such permutations

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
e_(l 2 3)'A1‘(1 3 2)'A2‘(2 1 3)'A3‘(2 3 1)'A4‘(3 2 1)'A5‘(3 1 2)

We have
1 2 3
A1A2 - (3 2 1) 7
however,
1 2 3
Axdy = (3 1 2)
, thus a contradiction arises since A1As # A>A1, thus not abelian. [ ]

Proof of Exercise 3: Given f € S,, suppose f™ = f" m < n, then if we take the inverse of f™
fmf—m — fﬂf—m.
Then I = f"™. Let k = n — m proving ¥ =1I. ]

Proof of Exercise 4: Suppose ord(bab™') = k and ord(a) = t such that k # t. If we take (bab™!)!, then by
exercise 12, then it would equal to ba‘b~™!. Continuing the group operations, we will get:

ba'b™ = beb™?
=bb?
=e.

Note that e = af, thus (bab™")! = at. If we take (bab="), then it would equal to ba¥b~!, which is equal to the
identity due to the order. Continuing on:

bakp™' = e
(b7'0)(a") b 'b) = b teb
eae =b7'b
ak =e.
Thus ak = e. If ak = e = at, then a¥ = a'. Hence k = t, a contradiction. [
Proof of Exercise 5: (a) Given a = ( _(1) _} ), then we can find the order by doing matrix multiplication

S e e
(1)

Thus a2 = e and is the least power of a that equals the identity, hence ord(a) = 3. Given b = ( 0

1

5 )
(v 1)

_é ), then we

can find the order similarly.

)0 ) )



Thus b* = e, hence ord(b) = 4.
(b) Let’s do a couple of powers to see if we notice a pattern. Let ¢ = ab and do a couple of base cases.

~—— ~—— ~——

— O = O = O = O
~—

== W= N — =

o
i
Il
—_——
|
~—

. . . 1
We now can hypothesize, in fact, an Induction Hypothesis, that ¢" = ( 0 ), where n € N.

-n 1

1 0
1
Now suppose k € S, our goal is to show k+1 € S.

Define S := {n e N: ¢" = }. We have proven multiple base cases, therefore we know 1,2,3,4 € S.

. 10
SRR
~ 10
|l =(k+1) 1
=Ck+1.
Thus we have shown that ck+1=(_(k+1§ ?),thusk+1€5byPMI. [

Proof of Exercise 6: (= ) Given G is abelian, let (ab)(ab)™' = e. Using group operations of the abelian
variety, we get that

(ab)(ab)™ =e
(a ta)b(ab)y ™t =ate
eb(ab)y™t =a"te

b(ab) bt =a"teb!
(ab)Y(bb™ Y =a"tp!
(ab)te =a"tp!
0(ab)™ =a1p7L.
Therefore (ab)™* = a~tb~1.
(&) Given (ab)™! =a~'b7!, then
(ab)a ‘b H =e
(ab)a Y (b™'b) = eb
(ab)(a~'a) = eba
ab = ba.

Thus, since ab = ba, then G is abelian. [



Proof of Exercise 7: Given for all x € G and x # e, ord(x) = 2, if we have any arbitrary element in G,
a,b € G, then similar to exercise 25, we have the following setup:

(ab)(ab) =e (11.1)
(ab)a(bb) = eb
(ab)aa = ba
ab = ba.

To explain what was just done, Equation 11.1 is possible due to the order 2 of two group elements grouped under
the group operation, which allows us to equal to the identity. From there, it is similar to exercise 25. [ |

Proof of Exercise 8: Given ord(ab) = k, if (ab)* = e and (aa=")¥ = e, then
(ab)f(aa™")k = ee
=e.
Note that we could combine these powers together such that
(ab)¥(aa™")F = (abaa=")k,
but by exercise 19, we get the following:

(ab)* = (a(ba)a™)*
= (ba)k.

Hence (ab)* = (ba)*. [

Proof of Exercise 9: Given ord(G) = n is even, suppose m, € G, with x € N, such that ord(my) = p is
some odd strictly positive value strictly greater than 1. Then for each m, € G there exists an inverse m;!, that
my # my!, plus some identity element e € G. If this is true, then ord(G) is odd, which is a contradiction to the
order of G being even. Thus there exists k € G such that k = k™!, this considers all even ordered values in G.
Hence, there exists a order 2 element k. [ |

Proof of Exercise 10: Suppose ord(a) = n and ord(b) = m. If m, n are relatively prime, then by theorem 7.9,
as long as 1|k in a¥, and m|l in b, then n and m divides Icm(m,n) = nm. Thus the ord(ab) = ord(a) ord(b) = mn.
|

Proof to Exercise 11: By Theorem 7.9, we know if ord(b) = n and n|6, then b® is an identity element. Thus
our divisors of 6 are 2,3,6. Since, ab = b*a, then we know that 2|4, thus the identity is not b2. Given ab = b*a,
then:
b=a"'b*
b? = a~'b%a by Exercise 12

bS — a_1b1211

Thus we have shown that b? is the identity. Since we know that b> is the identity, then by Theorem 7.7,

ab = b3ba
ab = eba
ab = ba.

Hence ab = ba. [ ]



Proof to Exercise 12: Given (ab)! = a'b’, then let
ai(bia)b — ai+1bi+1

al(abh)b.

Il

Thus bia = ab’ by Theorem 7.5. Since
ai“(bi“a)b — ai+2bi+2

Eli+1(€lbi+1)b.

Thus b*'a = ab™™'. Then given these two equalities, then

ab™ = (ab)b’
bitla = b(b'a)
= (ba)b'

(ab)b’ = (ba)b'.
Hence ab = ba. [ ]

Proof of Exercise 13: Given that T has elements of finite order that are in G, then we know identity e € G
is also in T since ord(e) = 1. Thus T is nonempty. Suppose a € G and ord(a) = n such that a” = e. Then we
know by a class lemma', that ord(a) = ord(a™"'), thus there exists the inverse of a.

Suppose a,b € T, ord(a) = n,ord(b) = m, thus by Exercise 31 in 7.2, ord(ab) = mn such that (ab)™" = e.
Thus ab € T, showing closure under multiplication. Thus by Theorem 7.11, T is a subgroup of G. [ |

Proof of Exercise 14: Given that C(a) is a set of abelian products by a and some element in G, we know
that identity e € C(a), since by the property of identities ea = ae = a. Thus C(a) is non-empty. Since a,a~! € G,
then by properties of inverses a~'a = aa~!, thus there exists inverses in a=! € C(a).

Suppose b, ¢ € C(a), then:

a(bc) = (ab)c

= (ba)c

=b(ac)

=b(ca)

= (bo)a.
Thus bc € C(a) showing closure under multiplication. Thus by Theorem 7.11, C(a) is a subgroup of G. [
Proof of Exercise 15: Given G is a group and for some a € G, C(a) is the centralizer in group G with a, we

need to show that Z(G) = [ C(a). We have previously defined
aeG

Cla)={geG:ga=ag}

and
Z(G)={geG:ga=ag,VaeG}.

Define S = () C(a). If c € C(a) but ¢ ¢ C(b), then c ¢ S. Suppose x € S, then x € C(f),xf = fxVf € G, which

aeG
follows the definition of the centre. Thus x € S. Suppose y € Z(G), then Va € G, ya = ay, which satisfies the
restriction of S, thus y € S. Thus Z(G) = N C(a). [
aeG

I1Dr. Chastkofsky allowed me to use this on the homework when asked in Office Hour



Proof of Exercise 16: Suppose H is a subgroup of G, ord(a) = n, ak € H, ged(k, n) = 1. Since ged(k, n) = 1,
then we can rewrite this as a linear combination 1 = rk + sn. Thus a' = a”**" € G. We know that a* € H, thus
(a*)" € H due to closure under multiplication. And

(ak)r(an)s — (ak)re

= (a"y.
Thus a"**" € H, thus a € H. [

Proof of Exercise 17: Given H is a subgroup of G and normalizer N(H) := {x €eG|x'Hx = H}, we know
e € N(H) since e € G and e~'ae = a for all @ € H. Thus N(H) is nonempty. Suppose a € H, let we know a~! € G,
then (a™')"'aa™! = a, thus a~! € H for all a € H. Thus this set is closed under inverses.

Recall given a,b € G, (ab)™! = b~'a~!. Suppose b,c € N(H), then

(bc)tabe = ¢t tabe
=c b tab)c
=clac

=a.
Thus bc € N(H) which shows closure under multiplication. Thus N(H) is a subgroup of G that contains H. ®

Proof of Exercise 18.a: Given G = (a) and ord(G) = n, we claim that ord(a) = n. This is because there
are only 7 elements in G which is generated by a, thus all the elements in G range from a',a?,...,a" %, a". Of
which a” must be the identity e, since G is a group. Suppose d = ged(m, n), such that d = rm + sn. Similar to
the proof of Exercise 16:

ad = glmsn
— (am)r(an)s
= (a")"(e)’
Thus (a?) = (a™) by closure under multiplication. [

Proof of Exercise 18.b: (= ). Given a™ is a generator of G, and ord(G) = n and as we have shown earlier,
ord(a) = n, then define
S:={weN:1<w<nand a”™ must be unique}

Suppose n|m, then a™¥ = e by Theorem 7.9, thus this does not satisfy #S # n. This is an example of how we
will be approaching the rest of this proof.

Suppose ged(n,m) = d # 1, then by definition of lem(n, m) = & = x # nm. Thus #S # n, since there is some
multiple of m and n that is not mn and w cannot reach past x. Thus ged(n, m) = 1, thus lem(n, m) = nm, thus
all a™” are unique and w reaches n such that #S = n.

(&<=). Given ged(n, m) = 1, then lem(n, m) = nm and #S = n. Thus a™ is a generator of G. [

Proof of Exercise 19: (= ). Define S = Z,, X Z,,. Suppose gcd(m,n) = d # 1, then as we have shown
in similar fashion to the proof of Exercise 18, lem(m,n) = x < mn. Thus for a € S, a* = (0,0), which means
ord(a) < mn and ord(S) = mn, thus is not cyclic.

(&=). Suppose ged(m,n) =1. If a € S, let ord(a) = p. Since ord(S) = mn, thus mn > p. Since lem(m, n) = mn,
by the proof of Exercise 18, mn < p. Thus mn = p. Since ord(S) = ord(a), then S is cyclic. [



Proof of Exercise 20: First we must check that & is indeed a homomorphism.

wowo=( 2 4)(3 2)

(1 0
“la+b 1
= h(a +b).

Thus & is a homomorphism. Now to check if /1 is also injective, suppose we have h(x) = h(y):

L)

then as shown, x = y. u

Proof of Exercise 21:

112134
1111234
21214113
3131412
4141321

113|719
113|719
313917
71711193
9197131

Set f(1)=1,f(2)=3,f(3)=7,f(4) =9, and it can be seen that these two groups are indeed isomorphic. [

Proof of Exercise 22: Given f is a subjective homomorphism and G is abelian, suppose f(a) = ¢, f(b) = d.
Since f is a homomorphism, then f(ab) = cd, but f(ab) = f(ba) = dc. Thus cd = dc. Hence H is abelian. [

Proof of Exercise 23: (= ). Given G is abelian, suppose f(x) = x~!. Then:

= f()f(y).

Thus f is a homomorphism.
(&=). Suppose f is a homomorphism.

xy = f(x)f(y™)

=fxty™)
= flyx™)
= yx.
Thus G is abelian. [ ]

Proof of Exercise 24.a: Define S =a"'Na. Given N is a subgroup of G and a € G, suppose b, c € N, then:

a‘baalca = a ' (bo)a.



Thus a~'(bc)a € S. Thus S is closed under multiplication. Suppose a='ba € S, since b=! € N, then
a'baa b la =atbba
=a'a
=e.
Thus (a~tba)™t =a~'b~'a € S. Hence S is a subgroup of G. |

Proof of Exercise 24.b: Suppose we have a function f : N — S. In the effort to show a subgroup, we have
already shown that this function is a homomorphism. If we have b,c € N, a~'ba = a~'ca, thus by cancellation
law, b = c. Thus f is injective. Suppose for all b € S, such that there exists a ¢ € N such that f(c) = b. Let
b =a"'ca, then by group operations:

b=a"'ca
aba™! =c.
Thus f(c) = f(aba™) = a~'(aba~')a = b. Hence, f is isomorphic. [

Proof of Ezercise 25: Given G = (a) and G = (b) and f : G — G given by f (a’) = b’, we must show that f
is first a homomorphism.

fla'al) = 6™
= bipl
= f(a)f(@).

If we had f(a’) = f(a/), then b’ = b/, and since G is cyclic, then i and j are unique, thus i = j. Thus we have
shown that f is homomorphic and injective.

Suppose ord(G) = n, then ord(a) = ord(b) = n, and as we have proved that f is indeed injective, then a fi-
nite order G would make f surjective.

Suppose ord(G) = oo, then ord(a) = ord(b) = oo, and similarly due to injectivity, we have surjectivity. Hence, f is
an automorphism of G. [

Proof of Exercise 26: Given G is a cyclic group generated by (a) and f : G — H is a surjective homomor-
phism of groups, then by exercise 15, we know that f(a") = (f(a))". Since f is surjective, thus H = (f(a)).
|

Proof of Exercise 27: Note that all elements in Zs X Z5 X Z has at most order 2, as all elements are under
modulo 2. But given (1,1) € Z4 X Zs, ord(1,1) = 4, which shows a contrast in properties. Thus Z4 X Z5 %
Do X Vo X o |

Proof of Exercise 28: Since the only generators of Z are 1 and —1, thus by exercise 25 and 26, ord(Aut(Z)) =
2, thus Aut(Z) = Z>. ]

Proof of Exercise 29: Let’s do a couple of tests to see if we can come to any observations.
(12) = (12)
(123) = (13)(12)
(1234) = (14)(13)(12)
(12345) = (15)(14)(13)(12).

We can notice that the claim seems to be holding true that the cycle is even when k is odd.

( < ). Given that the cycle (a1as---ak), suppose k is odd. Since a; repeats itself in all pairings with as
through ay, then there are a total k — 1 transpositions, which is an even number. Therefore the cycle is even if k
is odd.



( = ). Given the cycle is even, suppose k is even. As we have said before, there are only k — 1 transposi-
tions, and since k is even, then the cycle must be odd. A contradiction has risen. By Theorem 7.28, the cycle
cannot be both even and odd, thus k must be odd for the cycle to be even. Hence proving this biconditional
relationship. [ |

Lemma 11.3.1 Exercise 7.2.33

Assume that a,b € G and ab = ba. If ord(a) and ord(b) are relatively prime, prove that ab has order
ord(a) ord(b).

Proof of Exercise 7.2.33: Suppose ord(a) = n and ord(b) = m. If m, n are relatively prime, then by theorem
7.9, as long as n|k in aX, and m|l in b!, then n and m divides Icm(m, n) = nm. Thus the ord(ab) = ord(a) ord(b) =
mn. ]

Corollary 11.3.1 Corollary of Exercise 7.2.33
The order of the product of two elements is ord(ab) = lem[ord(a), ord(b)].

Proof of Exercise 30: From Exercise 7.5.17 from the Textbook?, we know that the order of a k-cycle in group
S, has order k. From Exercise 7.5.18 from the Textbook, we also know that the product of disjoint cycles are
commutative. Look at the proof of the lemma above. Consider the corollary of the lemma.

Define 7 := []L, 0;. By 7.5.17, suppose we are trying to find the order of T = 0105. Let ord(01) = ¢, ord(os = d.
Then by the corollary of the lemma, ord(o102) = lem[c, 4].

Our next base case is suppose we have 7 = Hi’ o;. Let i = 1,2 remain the same orders of ¢, d respectively, and let
ord(o3) = e. Then our order is ord (H? 0i) = lem[lem|[c, d], e] by corollary of lemma.

Our last base case is suppose we have T = 1—1411 oi, similarly let all the previous orders remain as is, and let
ord(c4) = f. Then let ord ([]} o) = lem[lem[c, d]lem[e, f]] by corollary of lemma.

We now can hypothesize, in fact, an Induction Hypothesis, that
n n-1
ord (1—[ a,-) = lem lord (1_[ ai) , ord(an)]
1 1

for all n € N. Define S := {n € N : ord ([]] 0;) = lcm [ord( 1 o) ,ord(an)] }. By our base cases, we know that
1,2,3,4 € S. Now suppose 1,...,k € S, our goal is to show that k +1 € S:

oo 1)

1 1

k
=lem lord(n 0i), ord(akﬂ)] .

Thus k+1 € S by PML [
Proof of Exercise 31: (a). Suppose f(a) = f(b):
(12)a = (12)b
(12)(12)a = (12)(12)b (11.2)
a=b. (11.3)
The reason we could go from Equation 11.2 to Equation 11.3, is due to Exercise 17, of a k-cycle group being order

of the elements in the group.
(b). Since b € By, then b is an odd cycle. Thus (12)b is an even cycle such that (12)b € A,,.

f((12)b) = (12)(12)b
=b.

2From Hungerford Abstract Algebra,



Thus f is bijective.
(c) Since A, and By, is disjoint cycles, by Theorem 7.28, the union of A, and B, is equal to S,. Since ord(S,) = n!
and since f is bijective, then the orders of A, and B, are equal, then ord(A,) = n!/2. [

Proof of Exercise 32: Note that by Theorem 7.24, all permutations can be written as a product of disjoint
cycles, and by Theorem 7.23, all disjoint cycles are commutative. Therefore, for all n > 3 in S,,, there does not
exist an element that is commutative for all elements in S,, unless it is the identity. For example, there will
always exist an element (1...7n) which will show as non-disjoint for any cycle. [ |

Proof of Exercise 33: Given 7 is a k-cycle (ajas---ax) and 0 € S, then suppose there exists an element b
is not an element of (0 (a;) 0 (az)---0(ax)) and i € NS¥. Then oto'o(a;) = 07(a;) = o(a;). Thus oto~1(b) =
00~ 1(b) = b. Therefore, 610! = (0 (a1) o (az)--- o (ax)) [ |

Proof of Exercise 34: (a) Suppose f : Ac — Bg with 0 — o7, with Ag and Bg being the set of even and
odd permutations respectively. Suppose f(a) = f(b), then:

at =bt
gttt = bt !
a=h.

Thus f is injective. For b € Bg, b1t € Ag, thus f(bt™!) = b, thus f is a bijection. Thus ord(Ag) = ord(Bg).
(b) By (a), since ord(Ag) = ord(Bg), and since these partition G, then ord(G) = 2ord(A). Thus by the division
algorithm, 2| ord(G).

(c) Given K is a subgroup of S, of odd order, if K has an odd permutation, then by the previous part, half of K
is odd. Then it can be written that K is even, which is a contradiction. Thus K < A,,. [ ]

Proof of Exercise 35: Suppose f :S5, — Ayi2 with

if even

PR o
{o(n+1n+2) if odd

Suppose a and b are elements in S,,. f(ab) = ab = f(a)f(b), since ab is even as well. If a is even and b is odd,
then f(ab) =ab(n+1n+2)= f(a)f(b). If a and b are odd, then f(ab) = ab, since ab is even. If a is even and b
is odd, then f(ba) = ba(n + 1 n + 2), and since (n + 1n + 2) are disjoint to all elements in S, then by Theorem
723, ban+1n+2)=b(n+1n+2)a=f(b)f(a).

The function is also injective since if a and b is even, then f(a) = f(b) implies a = b. If a and b is odd, then
f(a) = f(b) implies a(n+1 n+2) = b(n+1 n+2), and by Exercise 17, a(n+1 n+2)(n+1 n+2) = b(n+1 n+2)(n+1 n+2)
implies @ = b. Thus since f is a injective homomorphism, then S, is isomorphic to the image of f, which is a
subgroup of Aj4s. []

Proof of Exercise 36: (123)"! = (321). Every other element has the inverse of itself, other than the identity
which is already the inverse. [ |

Proof of Exercise 37: 1 found a trick while doing this. Split the index in half, denoted h, then convert each
element from (—h) — (h), which should be in symmetric order. Then multiply the digits to get a product of one.
The first and last element will always be their own inverse.

In Z:

2—2
4 — -3
2(-3)=-6—-1



Proof of Exercise 38: Given G is a group, suppose we have with a,b € G, a = b:

axb=ant

= exp (ln alnb)
=exp(Inblna)
— blna
= b * 0

Thus G is abelian. [ ]

Chapter 9

Proof of Exercise 1: Given G is a group of order 25, our goal is to show that G is cyclic or an element in G
has order 5. By Corollary 8.6, since G is a finite group, then the order of all 2 € G must divide the order of G.
The possible factors of G is 1,5,25. If ord(a) = 1, then a = e. If ord(a) = 5, then we know that each element in
G has an order of 5. If ord(a) = 25, then there is one generating element of G making it cyclic. Thus this proves
the claim. [

Lemma 11.3.2 Reduction of Possible Divisors of 2n

The maximum divisor of 2n is n.

Proof of Lemma: Note that the total cap to integer divisors is | V2n]. What can we do to reduce this range
in relation to n. Could we have a possible divisor of 2n put into relation of n? That is the question this lemma
attempts to answer. By the Fundamental Theorem of Arithmetic, all divisors of n divide 2n. However, if n is built
up of primes n = p1ps...pk, then the only difference between n and 2n is the prime 2. Thus 2n = 2pps... pk.

Proof of Exercise 2: Given G is an abelian group of order 2n, with n odd, suppose G contains more than
one element of order 2. By Exercise 8.1.31, we know that since ord(G) = 21, which is even, then G contains at
least one element of order 2. By the previous Lemma, there are no greater divisor of 2n than n. Thus the only
divisors of n have to be odd by the Fundamental Theorem of Arithmetic leaving only one even divisor, which is
order 2. [

Proof of Exercise 3: (a). Suppose a and b has order 3 in group and a? = b?.

612112 — b2b2
at =p*
a3a = b3b
ea=eb
a="b.

Thus by these statements, a = b.

(b) Given G is a finite group, then for a € G, ord(a?) = 3:

(012)3 — (613)2
= 32
=e.
As we have proved in the proof of (a), a has order 3 already. Thus since a and a? have order 3, then without
loss of generality, all elements of order 3 have an even number to such elements, being included in the set

{b,b*:Vb € G and ord(b) =3



Proof of Exercise 4: Given p prime and p|ord(G), let S := {a € G : ord(a) = p}. By Exercise 8.1.34, there
are exactly p — 1 distinct elements of order p in the subgroup of G generated by (a). Define a relation on S
such that (a) = (b) denoted a ~ b. This relation creates clearly® distinct classes with each p — 1 elements,
[a] ={b €S :a ~ b}, hence p —1|S. In fact we learn that the number of these elements are n(p — 1), with n
counting the number of distinct classes under this relation. [ |

Proof of Exercise 5: Denote Z = Z(G). Given G is a group, suppose we have an element ¢ € Z. Then by the
definition of Z, we have that ¢ commutes with all elements in G. Thus we have that Z is a normal subgroup of
G. Suppose C < Z, then every element in C still commutes with every element in G. Thus subgroup C is normal
to G. [

Proof of Exercise 6: Given group G, we have previously proved that Z is a normal subgroup of G. Let f be
a automorphism of G. Given an element ¢ € Z, then:

f©)f(a) = f(ca)
= f(ac)
= f(a)f (o).
And since f is an automorphism, then we know that this function is also an isomorphism, thus unique and has

an inverse. Thus f(c) € Z, since f(c) € G and f(a) € G for all a € G. Thus Z is a characteristic subgroup. [

Proof of Exercise 7: Given K is a normal subgroup of order 2 in group G, then given k € G and ord(k) = 2,
let K ={e, k}. Suppose K ¢ Z, then k € K is not commutative with all elements in G. We know since ord(k) = 2,
then we know that k is commutative with k € G. By Theorem 8.11, Ka = aK, thus by weak commutativity
ka = ak, for all a € G. However, by our assumption this is only possible if k, k; = e, thus a contradiction arises.
Thus K C Z. [

Proof of Exercise 8: (a). Given N and K are subgroups of group G and N is normal to G, suppose NK =
{nk :n € N,k € K}. Let a = n1ky, b7 = k;lngl. Since k1ks € K due to closure, then klkglngl = n3k1k51 by
weak commutativity. Thus:

ab™' = nikikytnyt
= Tllﬂgklk;l.

Since nins € N and kiks € K, then ab™! € NK.

(b). Given N and K are normal subgroups of G, then for a = niky, b = k;'n;*, then:
ab™' = n ki ky'nyt

nikinytnokytng?

nlklngl(ngkglngl)

-1
n1k1n2 k3

niny noking ks
-1 -1

= NN, (anlnz )k3

= n1n51k4k3.

Since n1ny* € N and ksk3 € K, then ab™' € NK. ]

Proof of Exercise 9: Given K and N are normal subgroups of group G such that KN N = {e), suppose we
have a = k™'n"'kn. By using properties of normal subgroups, we have it that 2 € N but also that a € K, since
(k'n'k)n = k=Y(n~'kn). By the end of it, a = e, which satisfies K N\ N, then:

(k*nYHkn=e
(nk)y *kn=e
nk(nk)tkn = nke

kn = nk.

3 Allowed to state by Dr. Chastkofsky.



Thus nk = kn. [ |

Proof of Exercise 10: (a). Given N is a subgroup of G of index 2, then by Theorem 8.4, there are only two
distinct elements a can be that are not in N, thus Na; U Nas = G for all n € N. Since a; and a5 are not in N,
and we know that N is a subgroup that is also closed under multiplication, thus Na ¢ N.

(b). Suppose for a ¢ N and n € N, then a™'Na € Na and a™*Na ¢ N. Then a !N € N due to closure
under multiplication to satisfy Na coset properties. Since a™! € N, then a € N, and as we proved by part (a),
thus a contradiction. Since Na makes up all elements that are not in G, then it must be the case that a7*Na € N.
Thus N is a normal subgroup by Theorem 8.11, since a '!Na C N. [ |

Proof of Exercise 11: Given ord(H) = n and H is the only subgroup of this order, then we know that all
elements of H have finite order also. By Exercise 7.4.20, a~'Ha < G and H = a~'Ha, given that a € G. Thus the
orders of H and a~'Ha are also the same due to this isomorphism, but we are given that H is the only subgroup
of order n. Thus a~'Ha = H. Hence H is normal. |

Proof of Exercise 12: By properties of right cosets, suppose Ta € G/T, then:
(Ta)* =T(a").

If a € T and ord(a) = n, then a" = e, thus Te = T, which does not have finite order. If ord(a) = oo then T(a")
will never have finite order for any n € IN. [

Proof of Exercise 13: Given that G is a simple group and f : G — H is a surjective homomorphism of
groups, then let K be the kernel of this function. By Theorem 8.4.16, K is a normal subgroup of G, however since
G is simple, this could either mean the trivial group or G itself. If K is trivial then K = {e), thus by Theorem
8.4.17 f is isomorphic due to injectivity. If K equals the G group itself, then all elements in G have to map to
ey, which means H = {e). [

Lemma 11.3.3 Exercise 7.2.33

Assume that a,b € G and ab = ba. If ord(a) and ord(b) are relatively prime, prove that ab has order
ord(a) ord(b).

Proof of Exercise 7.2.33: Suppose ord(a) = n and ord(b) = m. If m,n are relatively prime, then by theorem
7.9, as long as n|k in a*, and m|l in b', then n and m divides Icm(m, n) = nm. Thus the ord(ab) = ord(a) ord(b) =
mn. [ ]

Corollary 11.3.2 Corollary of Exercise 7.2.33
The order of the product of two elements is ord(ab) = lem[ord(a), ord(b)].

Proof of Exercise 14: (a). Note that the only element of order 1 is the identity, thus K is closed under the
identity. Given how ord(a) = 2, then it is also closed under inverses due to the inverse also having the same order
as the element. Suppose 4,b € K, then ab~! has order less than 2 due to lem(ord(a), ord(b)) < 2 by Corollary
9.1.1. Thus K is closed under multiplication, thus a subgroup of G.

(b). H is closed under identity since e? = e € H. H is closed under inverses since given a € G, a?,(a~1)? € H, but
(a™1)? = (@®)7!. Given a,b € G, then (ab™)? = (b71)24a2 = a?(b™")2 € H. Thus H is closed under multiplication.
Hence H is a subgroup of G.

(c). Define a map f : G — H by x > x? with kernel K. We claim f is a homomorphism: Given x,y € G

flay™) = (xy™)?
— (y—1)2x2
— xQ(y—l)Q
= f)fy™)
Since H is composed of all squares of G, then f is surjective. Given that ker(f) = {x € G : f(x) = en}, note that

f(x) = x2, which follows our requirement for K being the kernel holding all orders of 2 or less. Hence by the First
Isomorphism Theorem, G/K = H. [ |



Proof of Exercise 15: Define G =Z X Z and define amap f : G = Z by (a,b) — a —b. We claim that f is
a homomorphism: Given (a,b),(c,d) € G

f((a,b)+(c,d))=f(a+c,b+d)

a+c—(b+4d)

a-b+c—-d

f(a,b)+ f(c,d).

Thus f is a homomorphism. Suppose (a,0) € G, then f(a,0) = a —0 = a, thus f is a surjective function. Given

ker(f) = {(a,b) € G : f(a,b) = ex}, but this is only true when a = b, thus we have a kernel of K = ((1,1)). Hence
by the First Isomorphism Theorem, (Z X Z)/{(1,1)) = Z. [

Proof of Exercise 16: Define a map of f : GL(2,R) — R* by (i Z) +— ad — bc. We claim f is a homomor-
phism: Given (i b) , (; f) € GL(2,R)

d h
a b\fe f\|_ ae+bg af +bh
f[(c d)(g h)}_f (ce+dg cf+dh)
=(ae+bg)(cf +dh)—(af +bh)(ce +dg)
ad(eh — fg) +be(fg —eh)
(ad - be)(eh - £g)

=r|(e Bl )

Thus f is a homomorphism. We claim that f is a surjective function: Given (\? 0) € GL(2,R), then

Vx
Vx 0 . o : .
f - = x, thus f is surjective. We defined the ker(f) = {x € GL(2,R) : f(x) = 1}, which the special

linear group accomplishes due to the determinate equalling 1. Thus GL(2,R)/SL(2,R) = R*. [

Proof of Exercise 17: Given K and N both subgroups of G with N normal in G, let NK = {nk | n € N,k € K}
be a subgroup of G that contains both K and N.

(a). Since N is normal to G, then N is also normal to NK since k € K also means k € G.
(b). Given a,b € K:

f(ab) = Nab
= NaNb
= f(a)f(b).

Thus f is a homomorphism. Given n € N,k € K, then Nnuk = Nk = f(k), thus f is surjective. We defined the
ker(f) = {x € K: f(x) = N}, but note that Nx = N means that also x € N. Thus K[\ N is our kernel, thus f is
a surjective homomorphism with the restrictions as stated.

(¢). By (b), the First Isomorphism Theorem makes K/(N N K) = NK/N. [

Proof of Exercise 18: Suppose N g S, such that ord(N) = 2. Then let N = {e,a}, then ea = ae, aa = e.
Thus N < Z(S;). By the lemma provided above, since N < Z(S,,), ord(N) < ord(Z(S;)). Hence a contradiction.
2 £ 1. Thus there is no subgroup of order 2 in n greater than 3 in S,,. [ |

Proof of Exercise 19: Given N < S, and o7 = (1) for all 0,7 # (1) € N, let N # (1) and ¢ # (1) € N, then
oo = (1) which is order 2. Thus T = 0. Hence N = (1) or N is cyclic of order 2. [

Proof of Exercise 20: Given N < S, and N (A, = A, then A, C N since N is exactly A, or ord(N) >
ord(A,). Since ord(A,) = n!/2, and the order of S, is n!. Hence N can either be order n! or n!/2, which is either
A, orS,. [ ]



Chapter 10

Proof of Exercise 1: Given K < Z & Z, then (0,0) € K, thus by definition of H, 0 = ¢ € H. Given (a,b) € K,
then (a,b)™' = (a=',b™') € K. Thus b,b~! € H. Since K is closed under multiplication by (a,b)(c,d) = (ac,bd) €
K, then H is also closed under multiplication since given b,d € H, bd € H. [

Proof of Exercise 2: (a). Given G is an abelian groups and T is the torsion subgroup, then e € T since the
identity has finite order of 1. Given a € T, a~' € T since the inverse has the same order as a. (a=")ll = (al?)~1 =
e l=e¢. Givena,beT:

(ab)llIVl = (glalylelplel)lal
= e|b|e|u|
=e

Thus ab e T.

(b). Given 0 # Ta € G/T, then suppose a ¢ T and Ta has finite order m. (Ta)™ = Ta™ =e. Thus a™ = e so
a €T. Thus a € T, a contradiction arose. Hence all nonzero element of the quotient group G/T have infinite
order .

Proof of Exercise 3: The isomorphism types of abelian groups are:
1. 2°
2. 24 %2
3. 23 x 22

4. 23X 2%2

5. 22x22x2

6. 22X2X2X2

7. 2X2X2X2X2

The representatives for each respectively of these are:

1. Zso
2. g X 2o

Zg X2y

L Xy X 2o

Ly X2y X 2o

Dy Xy XMy X oo

Zo Xy XXy X Lo X 2o,

N o e w

Proof of Exercise 4:

2,2,2,8,9,5,5>2,2,2,2%,3%,5,5
= d,=2%-32-5=360
2,2,2,5 = dy=2-5=10
2,2 = d3 =2

Thus
Lo @l ®Ls DLy ® s &L = Lisgo D Z1o D 2o



Proof of Exercise 5: Given G = As.
(a).

5 = (12345)
5, = (12354)
3+1+1 = (123)(4)(5)
24+2+1 = (12)(34)(5)
1+1+14+14+41 = (1)
(b).
5 = 5!/10 = 12
5, = 5!/10 =12
3+1+1 = 5(4)=20
2+2+1 = 5!1/22 =15
1+1+14+14+1 = 1

Note that we needed to split 5 into two different subgroups due to 24 + 60. In all summed up, these elements
equal 60, which is the total element of As.

(c). The size of the centralizer for each element in part (a) is associated with the number of elements above,
except for the identity, which is the size of the center.

(d)-
ord(G) = ord(Z(G)) + [G : Cc(12345)] + [G : Co(12354)] + [G : Co(123)] + [G : Co(12)]

Proof of Exercise 6: Given K is a Sylow p-subgroup of G and N, which N is also a normal subgroup of G,
then suppose K is normal to N. Since K is normal to N, then K is the only Sylow p-subgroup to N by the
corollary of the Second Sylow Theorem. Let N = ¢gNg¢™!, then ¢K¢™' < N, which is also a Sylow p-subgroup.
Since K is normal and a Sylow p-subgroup, then it must be the only subgroup of this kind, thus K = ¢gKg~'.
Hence K < G. [

Proof of Exercise 7: (a). Given N is a normal subgroup of G, and C is the conjugacy class of a in G, then:
(). suppose C C N. Let C :={b € G: gbg™! = a}, then since conjugacy classes are symmetric, it is also the
case that gag™' = b, thus a € C. Hence a € N.

(= ). Suppose a € N, thenlet N :={n € G:Vx € G, n,m € N,xnx"! = m}. Since xaa~' = m, then by the
equivalence class of C, we have that m ~ a. Hence C C N, as we have all relationships such that C 3 ymy~! = a.

(b). Suppose C; is the conjugacy class of ¢ € G. By the previous part, we have learned if ¢ € N, then
C; € N. However, by the contrapositive, if C; € N, then ¢ ¢ N, thus C; and N are disjoint sets.

j
(c). The class equation of G, is |Z(N)| + X ord(C;). If C; is not in N, then we can rearrange these terms
i=1

k

such that k < j such that |J C; = N. Since N is only comprised of conjugations of elements in G. By part (b),
i=1

we have that either these conjugation classes are a subset of N or the intersects resulting in the empty set. Thus

k
by definition of a normal subgroup, we have that this class equation: } ord(C;) = ord(N) must hold true. [
i=1
Proof of Exercise 8: Given N # {e) is a normal subgroup of G and ord(G) = p", then ord(N) = p* such that
k < n. Due to Theorem 9.21, since N is made of Conjugacy classes, which we learned in our previous proof of
Exercise 7, then there must be some pkl ord(G) = p". Then it follows that there is some e # a € N such that
gag~t =a, thus a € Z(G). Hence N N Z(G) # (e) [ ]



Proof of Exercise 9: Given that N(N(K)) results in all x € N(N(K)) such that xN(K)x~! = N(K), since
N(K) = K. Hence N(N(K)) = N(K). ]

Proof of Exercise 10: Given ord(G) = p", suppose k = 1, then a subgroup of p¥=t = p'=1 = p® = 1 is {e}.
Assume that all 1 < i < k is true, and let i = k + 1. By Theorem 9.27, either ord(Z(G)) = p" or ord(Z(G)) < p".
If this is the case, then ord(G/Z(G)) = p" ¥ which we can then take the normal subgroup N/Z(G) which has
order p"~1 due to induction since by Exercise 12, N is also a normal subgroup of G. Hence G has a normal
subgroup of order p"~*. [

Proof of Exercise 11: A group of order 30 has the elementary divisors of 2,3,5. If we are to take divisors
of such an order, we get 1,2,3,5,6,10,15,30, but numbers of the form 1+ 2k are 1,3,5,7,9,11,13,15, which
have a common number list of 1,3,5,15. If there is exactly one Sylow 2-subgroup, then this must be normal
and, thus cannot be simple. Thus there are at least three Sylow 2-subgroups. Similarly, if we are to take
1+3k=1,4,7,10,13,16 which have a common list of 1,10, which means there is at least 10 Sylow 3-subgroups.
For 1+ 5k =1,6,11, 16, which result in at least 6 Sylow 5-subgroups. Since these subgroups are all disjoint, then
there are exactly m(p — 1) elements of each order, where m is the number of minimum Sylow p-subgroups which
result in 3, 20, 24 elements. These added up result in a total of 47 elements of prime order, which is not 30. Thus
a simple group of order 30 is not possible. [ |

Proof of Exercise 12: Given K is a Sylow p-subgroup and N is normal to G, by Lagrange’s Theorem and
Exercise 15, we have that [N : KN N] = [KN : K]. Thus [G : K] =[G : KN][KN : K]. Then [KN : K] | [G : K]
which [G : K] is not divisible by p, by the definition of Sylow p-subgroups. Thus p 4 [N : KN N], thus KN N is
a Sylow p-subgroup of N. [

Chapter 11

Proof of Exercise 1: Given K is a splitting field of f(x) over FF, suppose uy,...,u, € K be roots of f over
F. Then since K is a splitting field of f(x)/F, then K = F(uy,...,u;). Thus F € F(u;) € F(uy,u3) € ... C
F(uy,...,uy). Since [K : F] = [[F(u;) : F][K : F(u;)] and [K : F] is prime, then if [F(u;) : F] is 1, then
F = IF(u;), which is a contradiction since u; is supposed to be an extension of IF. Thus [K : IF(u;)] is 1, hence
K = F(u;) = F(u), given u; = u. [

Proof of Exercise 2:
xte1=(2-i)(x%-i)
= (x = Vi)(x + Vi)(x = V=i)(x + V=i) = (x — ™) (x + ™) (x — 3T (x + €37/
— Q(ein/4)

— Q(i,V2)

Proof of Exercise 3:

x4 —9= (X _ 21/4€i7'£/4)(x _ 21/4e3in/4)(x _ 21/4€5in/4)(x _ 71/481'71/4)
= Q(2'*,i)
= R(i)



Proof of Exercise 4: (a). Given f(x) = cx" € F[x] and g(x) = bo + byx + - -+ + bxx* € F[x], then:

D(f(x)g(x)) = D[(cx™)(ag + a1x + ... + akxk)]

n+1 + n+k)]

= D[(cagx" + carx ... teagx

n+k—1

neaox™ 1+ (n = Vcagx™ + ... + (n + k)cagx

n+k—-1 n+k—-1

+ kcayx
n+k—1)

=ncaox" ' + ncayx™ + carx™ + - + neagx

=ncx! (ao +a1x 4+ akxk) + (calx" + -+ kcagx

=ncx"! (ao +a x4+ akxk) + cx" (al et kakxk_l)
=Df(x)g(x) + f(x)Dg(x).
(b). Given f(x), g(x) are any polynomials in F[x], then:
fx)=ap+a1x+...+a,x",

g(x)=bo+bix+...+byx"

D(f(x)g(x)) =D [(ao + a1x + ...+ aux™) (bg + bix + ...+ byx")]
=Dlag(bo+bix+...+byx™)+a1x(bo+bix+...+byx") +...+aux" (bg +bix +...+byx")
=Dlag(bo +bix +...+b,x™)] + D[ayx (bg+bix+...+byx")]+ ...+ D [amx™ (bg + bix + ...+ byx")]
=Dag(bg+bix+ ... +byx")+ D (ay1x) (bg+bix +...+byx")+ (a1x) D (bg + byx + ...+ byx™) +...+
D (amx™)(bo +b1x + ...+ byx™) + (aymx™)D (bo + bix + ...+ byx")
=(@o+ax+...+apx")YD (bg+bix+ ... +byx")+ D [(a1x) +...+ (amx™)] (bo + bix + ...+ byx")
= f(x)Dg(x) + Df(x)g(x)

Proof of Exercise 5: Given f(x) € F[x] and n is a positive integer, then let:

Df(0)" = nf(x)'" ' Df(x)

Let’s take a couple of steps to see if we notice a pattern. If n = 1, then:
Df(x)" = f(x)°Df(x)
= Df(x).
Which is true. If we let n = 2, then:
Df(x)* = 2f(x)Df(x)

Which followed our definition of a derivative. We now can hypothesize, in fact, an Induction Hypothesis, that
Df(x)" = nf(x)"'Df(x) where n € N. Define

S:={neN:Df(x)" =nf(x)"'Df(x)}.

We have proven two base cases, therefore we know 1,2 € S. Now suppose k € S, our goal is to show k+ 1 € S.
Assume n = k, and note that due to the product rule from the previous exercise, we have that:

D[f(x)" - f(x)] = kf(x)* " D[f(x)]f (x) + f(x)*D[f (x)]
= kf(x)*DIf(x)] + f(x)D[f ()]
= (k+ 1)f(0)*DIf ()]
= D[f(x)*"]
Hence (k + 1) € S by PMI. -



Proof of Exercise 6: (= ).If. u € Kisarepeated root of f(x) € F[x], then for some n > 1 and g(x) € K[x]
we have

fx)=(x—u)"g(x)
Thus:
DF(x) = n(x - u)"~1g(x) + (x — 1) Dg(x).
Note that Df(u) = 0, thus u is a root of D f(x), thus a repeated root of f(x) and D f(x).

(&=). Given u is a root of both f(x) and f’(x), then f(x) = (x —u)g(x). Thus:

Df(x) = (x —u)Dg(x) + g(x).
Since u is a root of both, then Df(u) = 0. Thus g(u) = (x — u)h(x) for some h(x). Thus Df(x) = (x — u)?h(x).

Hence u is a repeated root. [ |

Proof of Exercise 7: ( = ). Given f(x) € F[x] is separable, then f(x) has no multiples roots in F[x].
Suppose f(x), Df(x) are not relatively prime, then utilizing the previous exercise we have that

Df(x) = (x —u)Dg(x) + g(x)
flx) = (x —u)*h(x),

for some h(x) and g(x) € F[x]. Thus it is shown that u is a multiple root of f(x), thus a contradiction. Hence
f(x) and Df(x) are relatively prime.

(&=). Given f(x) and f’(x) are relatively prime, suppose u is a multiple root of f(x) € F[x]. Then:

flx)=(x-u)"gx)
over splitting field K. Thus

Df(x)=n(x—u)"'g(x)+ (x —u)"Dg(x).

Then it contradicts that u is a multiple root since f(x) and D f(x) are relatively prime. Hence f(x) is separable.
|

Proof of Exercise 8: ( = ). Given p(x) is separable, then by the previous exercise, it is relatively prime.
Thus Dp(x) is a irreducible polynomial, hence Dp(x) # Of.

( & ). Given Dp(x) # Of, then p(x) is irreducible and Dp(x) has a lesser degree. Thus p(x) is relatively
prime. Hence, separable. u

Proof of Exercise 9: Let { = tHT ',

(a). Given T € G is a automorphism, let 0 € THT ! be an element that fixes o(x) = x for all x € 7(K).
Because we have that K is a fixed field of H, then 7*(x) = x. Since x is fixed by every element of H, then it
must be the case that also h(x) = x for all x € K. Thus o(x) = 7(x) for all x € 7(K). Hence Inv(tH7 ') = 7(K).

(b). ( = ). Given H is normal in G, then for all T € G, we have that tHt™! = H, due to the definition
of normal subgroup. What we have established in part (a) is that Inv(tH7™!) = 7(K). Since H is normal;, then
we have that Inv(H) = K = 7(K).

(<=). Given for all T € G, if 7(K) = K, then suppose by part (a), we have that Inv(tHt™ ') = 7(K). Thus since
we have by the definition of K, that 7(KK) = K, then we must have that Inv(tH7™!) = K. Thus ¢ fixes every
element of K. Since K is the fixed field of H, it only naturally follows that H is normal to G.

(c). Given for all T € G and 7(K) = K and u € K such that f(X) be its minimal polynomial, then sup-
pose since u € K, then all the conjugates of u: uy,us,Us, ..., u; are also in K under the action of G. If f(x)
splits linear factors into a splitting field E over F[x]], then f(x) = (x —u1)(x —uz)...(x —u;). Since K is the



fixed field of H, then if T € H, then t(u) = u for all u € K. Hence f(x) is fixed under for all h € H. Thus all
roots of f(x) are also in K. Hence, f(x), a minimal polynomial of u splits in K.

(d). Given H is normal over G, then since a field extension E/FF is galois if and only if it is normal and
separable, then it must be the case that since H is normal in G, then every conjugate of k € K under action G is
also in K. Thus K has all of it’s conjugates, thus K is normal over F. For all a € K, by the last part, we have
shown that f(x) splits into linear factors in K, implying that f(x) has distinct roots in K. Thus K is separable
over [F. Hence K is normal and separable over IF. Hence K is galois over FF.

(e). Given that for all elements u € K, the minimal polynomial of u splits in K, then suppose for some
T € G, let u € K also be arbitrary. If minimal polynomial f(x) of u splits in K, then by part (c), all of its roots
are also in K. Hence t(u) € K for all u € K. Since, 7 is an automorphism. Then it follows that 7(K) C K.
If for some v € K, we have K is the fixed field of H, then for any ¢ € H, we have that o(v) = v. Since 7 is a
automorphism and H is a subgroup of G, then we also have by part (b) that H is normal to G, thus tHT™! = H
meaning 7 'H7. Hence t-'(H) = H. Thus 77'(v) = v, implying that 7(v) = v, due to bijectivity. Thus K C 7(K).
Hence for all T € G, 1(K) = K.

(f). Given that K is galois over [F, then since a field extension E/F is galois if and only if E is the split-
ting field of some separable polynomial in F[x]. As we have stated earlier in part (d), since a field is galois if and
only if it normal and separable, we have the quality that K is normal a separable over F. Let for some 7 € G, for
all u of f(x) in K, we have that it’s conjugates under G are also in K since K is also normal. By the previous
part, we have that for these circumstances of a minimal polynomial of u splits in K, then we must have 7(K) = K
for all T € G. Since H and also £ = tHt™ !, then by part (b), if H is normal in G, then we must have for all
T € G, then since 7(K) = K. Since 7(K) = K, we have that £ = H. Hence H is normal in G.

(g). Given 0 € Aut(E/F) and the definition of ¢ |k, then suppose K is galois over [F. If ¢ is an automor-
phism of [E/IF, then it fixes IF. Thus if a,b € K such that a = b if and only if o(a) = o(b) if and only if
o0 |k (a) = o |k (b), because a and b are fixed by ¢ since it is an automorphism fixing E over IF. Thus it is
well defined and injective. If 0 |g (a +b) = g(a +b) = a(a) + o(b) = 0 |k (a) + 0 |k (b), and likewise we have
that o |k (ab) = o(ab) = o(a)o(b) = 0 |k (a)o |k (b). Thus it is closed under addition and multiplication as
a homomorphism. Since ¢ |k is a homomorphic injective function, and also since Im(o |k) = K, then it is also
surjective. Thus o |k is an automorphism of K over F. Thus o |ge Aut(K/F).

(h). Given K is galois over F, then let 0,7 € Aut(E/F), such that (o o 7) |k= o(7(K)) = ¢ |k ot |k for
all 0,7 € Awt(E/F). Thus 0 — 0 [k is a homomorphism from Aut(IE/F) to Aut(K/F).

(i). Let L = ker(c — o0 |g). Given K is galois over [F, then let T € Aut(E/K). For all u € K, let 7(u) = u. Thus
T is a identity map on K, thus 7 € IL for all 7 € Aut(IE/FF). If 0 € Aut(IE/IF) be in the kernel L, then o(u) = u,
for all u € K. Thus 0 € Aut(E/K). Since every element in Aut(E/K) is in L, and every element in L is in
Aut(E/K), then it must be that IL = Aut(E/K).

(j). Given K is galois over F, and given theorem 11.14, since K is the splitting field of some seperable polynomial
f(x) over F. Let L be the splitting field of o f(x) over E. Suppose ¢ : K — IL defined by Theorem 11.14, then
L is a splitting field of of(x) over E, then let ¢ : E — E, where ¢ is the identity on F and maps K — L in
an isomorphism. For all 0 € Aut(E/F), let T = ¢ 0o 0 o ™!, as a conjugation by functions. Since 7 fixes F and
maps K to itself, then for all u € K, we have that (1) = ¢(o(p " (u))) = ¢(a(p(P~1(u)))) = Y(o(u) = o(u). Thus
T |k= 0. Hence for all T of K over F, there exists some ¢ € Aut(E/IF) such the mapping of the homomorphism
0 — 0|g from the group Aut(E/F) to the group Aut(K/F) is surjective.

(k). Given K is galois over [F and the first isomorphism theorem, since we have a surjective homorphism
¢ : G = Aut(K/F) defined by 0 — ¢ |k. Then by the first isomorphism theorem, G/ker(¢) = Aut(K/F). Since
we know from part (i), ker(¢) = Aut(E/K), then by the fundamental theorem of galois, Aut(E/K) = G/H. Hence
Aut(K/F) = G/H [
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