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Preface

What I understood from this course is that abstract algebra is an introductory course in nature, briefly touching
many different topics here and there. It is not a well-defined body of knowledge, it has a standard list of topics
to learn, but it is very optional to how one may want to approach them.

This textbook is a collection of notes from an undergraduate course in Abstract Algebra. This is not meant
to replace a textbook in any manner. Take what I have in this textbook with a pound of salt, as it has weight to
it but is not impossible to throw over. It is filled with explanations in a way that I try to explain to others as if
I were talking to you. I have dealt with a novelesque textbook this semester, and trust me it will not be like me
talking to you without having to decipher the theorems and proofs in the text. I use exercises that I found were
fun to solve while also grasping the content material and being able to solve them.

As most of you will want and expect, there is a solutions page at the end of the textbook and it is very much my
own solutions. Some of them may not be the best or most efficient way to solve them. I may have also lost points
in class for some of the problems, however, this is definitely going to be community-based help if you would like
me to correct a solution and I will be happy to credit you in the next revision of the textbook. Feel free to contact
me through email.

Now a common objection to the course here at the University of Georgia is that we learn rings before groups, and
from what I know, I definitely do agree with this objection. However, I will leave the text as is in the sequence
of topics that I learned.

I included an extra section that I did not go over but was definitely something that is important to remem-
ber and learn about. This being, the first chapter: Introduction to Algebra. If you have not taken a proofs-based
course or had a rough start, I highly heed you look at this section.

I am really into open courseware, which means this will always be open for everyone to use and distribute
as long as you have the page that includes my credits, which is Pages 1 and 2.
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Chapter 1

Introduction to Algebra

The content in this chapter is things to know by heart. We will not be going back and explaining the content
discussed in this chapter.

1.1 Logic

For those coming from a pure symbolic proofs-based class, this text will definitely be a bit striking as I don’t like
using symbols every time they can be used. It’s easier to convey thoughts by just using words and to depict very
slight meanings that may not be robotic. It is definitely not impossible to do the mental conversion into symbolic
language, however, the way I learned proofs was to use more words than symbols.

As a matter of fact, some classes may even deduct points for the overuse of symbols, and I have heard this
tale through and through from many people. So take what you will, but I hope this will create some change.
If there is one thing to take away from this section is that there is nothing ever wrong with using words over
symbols, while there is the vice versa.

Let 𝑃 and 𝑄 be statements. It should have been discussed in a proof class the difference between statements,
questions, and commands.
”P and Q”: This is true if and only if P and Q are both true. This is denoted by ∧.
”P or Q”: This is true for all cases of P or Q being true, or false if they are both false. This is denoted by ∨.
”P implies Q”: We use implications to show that if P has some true or false factor, then we result in Q being
true or false. For example, we usually write this in our English language as: ”If P, then Q”. This means that if
P is true, then Q will also happen. This is true for 3/4 possible outcomes, which means this is true when P and
Q are both true and false, and also true with P is false but Q is true. This is only false if P is true and Q is false.
A false premise is always a true implication to mind you. Implications are denoted by =⇒ .
”P if and only if Q”: This is called a biconditional, or an equivalence statement. This is short for saying ”P
implies Q and Q implies P”. This is denoted by ⇐⇒ .
”It is not the case that P”: This is true if and only if P is false, also called negation.

1.2 Sets and Classes

Set Theory is very much its own field so we will not be getting into the specifics and the nitty-gritty of each topic,
but it will be a brief overview.
Elements are either a part of a set or not part of a set. There are infinitely many elements and they have a
choice of being a member of a set. When an element, x, is a member of set A we denote this by

𝑥 ∈ 𝐴.

Otherwise we say
𝑥 ∉ 𝐴.

. We can also write this out in words as ”x is (not) an element of A”. These are some of the few things most
people use symbols for regardless of their preferences for symbolic language.
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The following are predicates.
1. ”For all” is denoted by ∀.
2. ”There exists” is denoted by ∃.
The axiom of extensionality states given sets A and B. For all elements, x, if 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵, then 𝐴 = 𝐵.
For all elements, 𝑥 ∈ 𝐴, if 𝑥 ∈ 𝐵, then A is a subset of B, denoted by 𝐴 ⊆ 𝐵.
The empty set is a set with no elements, denoted by ∅.
A class of sets is a set that contains other sets and only sets. The power axiom states that for every set A,
the power class 𝑃(𝐴) contains all subsets of A within a set. This is denoted by 2𝐴 and has 2|𝐴| elements.
A union of sets considers all of the elements in both sets, denoted by 𝐴

⋃
𝐵

An intersection of sets considers only the common elements in both set, denoted by 𝐴
⋂
𝐵.

A disjoint set is when given when 𝐴
⋂
𝐵 = ∅. A family of sets is a class of sets where each element, mind you

a set, is indexed. Generally denoted by
⋃
𝑖∈𝐼
𝐴𝑖 := {𝑥 : 𝑥 ∈ 𝐴𝑖 for some 𝑖 ∈ 𝐼}. Similarly with

⋂
𝑖∈𝐼
𝐴𝑖 .

The complement of A is related to the negation of A, where we use DeMorgan’s Laws.

1.3 Functions

Given sets 𝐴 and 𝐵, a function will map 𝑓 from 𝐴 to 𝐵, denoted as 𝑓 : 𝐴 ↦→ 𝐵. This means that will assign one
element in 𝑎 ∈ 𝐴 to exactly one 𝑏 ∈ 𝐵. The Im 𝑎 = 𝑏 written as 𝑓 (𝑎). Images mean the range of the function.
The domain of f is written as dom 𝑓 , while 𝐵 is the co-domain also known as range. Two functions are equal
if they have the same domain, range, and values for each element in the domain.

Suppose 𝑆 ⊆ 𝐴, then the function from S to B is 𝑔 : 𝑆 ↦→ 𝐵 ⇐⇒ 𝑔 : 𝑎 ↦→ 𝑓 (𝑎) for 𝑎 ∈ 𝑆. This is more
known as the restriction of the domain.

Let 𝑓 : 𝐴 ↦→ 𝐵 and 𝑔 : 𝐵 ↦→ 𝐶, Then a composite function of ℎ : 𝑎 ↦→ 𝑔( 𝑓 (𝑎)) is equivalent to ℎ : 𝐴 ↦→ 𝐶.
This is called a composite of f and g.

Functions are injective, or one-to-one, if for all 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏 implies 𝑓 (𝑎) ≠ 𝑓 (𝑏). This means all values
in the domain are only mapped to one value in the co-domain.A surjective function, or onto, is given for all
𝑏 ∈ 𝐵, 𝑏 = 𝑓 (𝑎) for some 𝑎 ∈ 𝐴. This means all values in the co-domain are mapped to at least one value in the
domain. A function is bijective, or one-to-one correspondence, if it is injective and surjective. Given the previous
mappings of 𝑓 and 𝑔, then if 𝑓 and 𝑔 are injective, we should check that 𝑔 𝑓 is injective. If 𝑔 𝑓 is injective, then
check that 𝑓 is injective. If 𝑓 and 𝑔 are surjective then we should check that 𝑔 𝑓 is surjective. If 𝑔 𝑓 is surjective,
then we should check that 𝑔 is surjective.

1.4 Relations

A cartesian product of sets A and B gives us

𝐴 × 𝐵 := {(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Note that 𝐴 × ∅ = ∅ = ∅ × 𝐵.

An equivalence relation, denoted by ∼ from A to B is

• reflexive: 𝑎 ∼ 𝑎 for all 𝑎 ∈ 𝐴;

• symmetric: 𝑎 ∼ 𝑏, then 𝑏 ∼ 𝑎 for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵;

• transitive: 𝑎 ∼ 𝑏, 𝑏 ∼ 𝑐, then 𝑎 ∼ 𝑐 for 𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝐵, 𝐶



1.5 Well Ordering and Induction

Definition 1.5.1: Well-Ordering

Every nonempty subset of ℤ⩾0 contains a smallest element.

This takes into account that there is an order relation (¡) on all integers of Z. The direct consequence of this
definition is Mathematical Induction. Mathematical Induction is a proof technique that uses recursive techniques
to prove that a statement is true for all elements past its base case.

Theorem 1.5.1 Principle of Mathematical Induction

Assume that 𝑛 ∈ ℤ⩾0 and P(n) is given.

1. P(0) is a true statement.

2. When P(k) is true, then P(k + 1) is also true.

Then P(n) is true for all 𝑛 ∈ ℤ⩾0.

A remark on this theorem is that P(k) does not have to be true, but we assume so. This is called the
induction hypothesis. In proofwriting, if we are given an ”If. . . Then. . . ” statement, we generally assume that
the statement before the ”Then” is true, and attempt to prove the rest. This is the same thing we have proved
through Induction. It can be seen as a result of continued direct proofs compiled together and generalized to
become the induction we know today. The following example is how we use Induction in today’s world, and it’s
important to note how we use it compared to how one may have done it for a proofs course. In other words, a
practical application of how a researcher would use induction.

Example 1.5.1

A set of n elements has 2𝑛 subsets
𝑃(0) : 20 = 1 subsets.
𝑃(1) : 21 = 2 subsets.
𝑃(3) : 23 = 8 subsets.
Assume P(k) is a set with k elements and has 2𝑘 subsets. Now prove 𝑃(𝑘 + 1) = 2𝑘+1 subsets.
In a more standardized proofwriting, we can define a set

𝑆 := {𝑛 ∈ ℤ⩾0 : 𝑃(𝑛) 𝑖𝑠 𝑡𝑟𝑢𝑒},

and show that 𝑆 = ℤ⩾0. Let our induction hypothesis be ”P(n) is true”. Since we have shown that our
base case : P(0) is true, then we assume P(k) is true and attempt to prove P(k+1). Let’s suppose that
since P(n) is true, then #𝑆 = 𝑘, which is the cardinal of set S. If we are to add a new element to set S
and attempt to prove 𝑘 + 1, every subset has the option to choose between including 𝑘 + 1 or not including
𝑘 + 1. Therefore set S has 2 ∗ 2𝑘 = 2𝑘+1 subsets. Thus proving 𝑘 + 1 ∈ 𝑆, therefore 𝑆 = ℤ⩾0. ■

1.5.1 A variation on Induction

Now with mathematical induction, also just referenced as induction, we can also show another type called Strong
or Complete Induction.

Theorem 1.5.2 Principle of Complete Induction

Assume that 𝑛 ∈ ℤ⩾0, P(n) is given. If

1. P(0) is true, and

2. P(j) is true for all j such that 0 ⩽ 𝑗 ⩽ 𝑡, then P(t) is also true.



Proof: Let’s prove this through induction. Let our induction hypothesis be if ”P(j) is true for all j such that
0 ⩽ 𝑗 ⩽ 𝑡, then P(t) is also true” Suppose there is a set S, such that

𝑆 := {𝑛 ∈ ℤ⩾0 : 𝑃(𝑗) 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 ⩽ 𝑗 ⩽ 𝑛}

For our base case, let’s set n = 0, and suppose that 0 ∈ 𝑆, thus P(0) is true.
Now assume P(k) is true, therefore P(k+1) is also true due to our induction hypothesis. Therefore 𝑘 ∈ 𝑆 and
𝑘 + 1 ∈ 𝑆 is true. Therefore by induction, 𝑆 = ℤ⩾0, and we have proved Complete Induction. ■

Similar to how we used weak or regular induction to prove complete induction, we can do the same in
reverse. In fact, we can prove all of these theorems and definitions using one another. We can use the well-
ordering axiom to prove mathematical induction and use mathematical induction to prove complete induction.
To complete the loop, prove well ordering through complete induction. On a harder note, we can prove regular
induction through complete induction, but it is possible.

𝑊𝑒𝑙𝑙 − 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 =⇒ 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

Proof: Let us define the set S as

𝑆 := {𝑛 ∈ ℤ⩾0 : 𝑃(𝑛) 𝑖𝑠 𝑓 𝑎𝑙𝑠𝑒} ⊆ ℤ⩾0.

Our goal in this proof is to show that the set 𝑆 = 𝜙.
Assume 𝑆 ≠ 𝜙. Then let 𝑑 ∈ 𝑆 be the smallest element. Let P(0) be true, but this means that 𝑑 ≠ 0. So that
means 𝑑 ⩾ 1. So if 𝑑− 1 ⩾ 1, then 𝑑− 1 ∈ ℤ⩾0. Since 𝑑− 1 < 𝑑, 𝑡ℎ𝑒𝑛 𝑑− 1 ∈ 𝑆, so P(d-1) is true. By assumption
𝑃(𝑑 − 1) =⇒ 𝑃(𝑑) so P(d) is true, so 𝑑 ∉ 𝑆. So 𝑆 = 𝜙, therefore P(k) is true for all 𝑘 ∈ ℤ⩾0. ■

Now that we have jump-started the proofwriting structure in our heads, let’s go ahead and start this course
with our next topic: Fundamentals of Arithmetic and Divisibility.



Chapter 2

Fundamentals of Arithmetic and
Divisibility

2.1 Axioms

Axioms are trivial definitions used in everyday life — or even mathematics — that we take for granted. They
are definitions that are inarguable and are the core of math today. I never quite understood the hierarchy of
math statements, but this is a way to look at it: Axioms are a specific type of definition that is just taken as a
fact or true. Definitions are similar to axioms in which they build the premise of future statements, these may
or may not include proofs to explain why this may be true. Lemmas are true statements that are not important
in the long run, but are trivial to understand to understand future statements, generally are associated with
proof. Propositions are important statements that must be associated with proof and are vital research building
blocks. Theorems are big conclusion that wraps each concept mentioned in a paper into one central idea and are
even more important than propositions, these also require proofs to be stated alongside the statement. Now the
following axioms or properties are what we accept without another thought, but they are important to mention
to understand future content when they are brought up again.

Definition 2.1.1: Additive Properties

1. Addition is well-defined. Given a,b Z, a + b is a uniquely defined integer.

2. Substitution Law: Since addition is well-defined, if a = b, and c = d, then a + c = b + d.

3. Commutative Law: For all a,b Z, a + b = b + a.

4. Associative Law: For all a,b,c Z, (a + b) + c = a + (b + c).

5. There exists a zero element 0 Z, called the additive identity, satisfying 0 + a = a for any a Z.

6. For all a Z, there exists a unique additive inverse, -a Z, satisfying a + (-a) = 0

Definition 2.1.2: Multiplicative Properties

Multiplication is well-defined. Given a,b Z, a · b is a uniquely defined integer.

Substitution Law: If a = b and c = d, then ac = bd.

Z is closed under multiplication, for all a,b Z, a · b Z.

Commutative Law: For all a,b Z, ab = ba.

Associative Law: For all a,b,c Z, (ab)c = a(bc)

1 Z is the multiplicative identity, satisfying 1 · a
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Definition 2.1.3: Distributive Property

For all a,b,c Z, a(b + c) = ab + ac.

Definition 2.1.4: Trichotomy Principle

Z can be split into three distinct sets.
ℤ = −ℕ ∪ {0} ∪ℕ

Definition 2.1.5: Positivity Axiom

The sum or product of positive integers is positive.

Definition 2.1.6: Discrete Property

We have learned these already but they are the Well-Ordering Principle of N, and the Principle of Induction.

2.2 Division

Now that we have learned the axioms of arithmetic, let us learn about the division algorithm.
We have all (hopefully) learned how to divide in grade school. As a revision, you can divide a number evenly by
some other number and whatever is left over will result as the remainder. This can be written more formally as:

𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = (𝑑𝑖𝑣𝑖𝑠𝑜𝑟)(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) + (𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟)

Now there is an important understanding I wanted to show to the audience. Every basic arithmetic operation
can be written in terms of addition and multiplication. We will later see with rings that we make our lives easier
by doing subtraction which shows both an inverse and additive property. But for now, that’s all mumbo jumbo.

Theorem 2.2.1 Division Algorithm

Suppose 𝑎, 𝑏 ∈ ℤ, 𝑏 > 0, 𝑎 = 𝑞𝑏 + 𝑟 such that ∃𝑞, 𝑟 ∈ ℤ, with 0 ⩽ 𝑟 < 𝑏.

Proof: Let there be set S such that

𝑆 := {𝑎 − 𝑥𝑏 : 𝑎 − 𝑥𝑏 ⩾ 0, 𝑥 ∈ ℤ}

Check 𝑆 ≠ 𝜙

Given a and b, find x, such that 𝑎 − 𝑥𝑏. If 𝑎 ⩾ 0, let 𝑥 = 0, then 𝑎 − 𝑥𝑏 =⇒ 𝑎 ⩾ 0.
If 𝑎 < 0 and let 𝑥 = 𝑎, then 𝑎 − 𝑎𝑏 = 𝑎(1 − 𝑏), and since 𝑏 > 0, 𝑏 ⩾ 1, therefore 1 − 𝑏 ⩽ 0.
Since 𝑆 ≠ 𝜙 then S is well-ordered. ∃𝑟 ∈ 𝑆, such that r is the smallest element of S.

Claim: 𝑟 ⩾ 0 and 𝑟 < 𝑏. Since 𝑟 ∈ 𝑆, ∃𝑞 ∈ ℤ such that 𝑟 ⩾ 0 and 𝑟 = 𝑎 − 𝑞𝑏. Prove that 𝑟 < 𝑏.
Suppose 𝑟 ⩾ 𝑏, then we can let

𝑑 = 𝑎 − (𝑞 + 1)𝑏
= 𝑎 − 𝑞𝑏 − 𝑏
= 𝑟 − 𝑏

𝑟 − 𝑏 ⩾ 0

So 0 ⩽ 𝑏 < 𝑟, 𝑑 = 𝑎 − (𝑞 + 1)𝑏, therefore 𝑑 ∈ 𝑆, but 𝑑 < 𝑟. Therefore we have a contradiction that r is the smallest
element of S, therefore 𝑟 < 𝑏. ■



There is a lot to dissect here. I want to dedicate special focus to this theorem. This will lay the foundation
so glance your eyes on this beauty and take it in its glory. But in all seriousness, this is a really important topic
to take in so let’s explain it thoroughly. Similar to what we have in Figure 2.1 with the dividend equation, we
just broke it down and generalized it using proof notation. So given that ”a” is some dividend, we have divisor
”b”, and quotient ”q” that are multiplied then added with remainder ”r”. There is also a reason why the division
algorithm requires that r be less than b but at minimum 0. This may be trivial, but if r is greater than b, we
can subtract r-b, and get the new remainder. It has the most optimized equation. Now that we understand what
we are doing in more understandable terms, let us look at our proof itself and implement it as a core memory as
how a child may remember their guardian.

Example 2.2.1

Let S be a set of remainders. We can do this through example. If

𝑎 = 81

𝑏 = 8

x is a variable
𝑟 = 𝑎 − 𝑏𝑥

If we let x = 1 for example, then r = 73.
If we let x = 4 for example, then r = 49.
If we let x = 10 for example, then r = 1.
If we let x = 11 for example, then r = -7.
However, r can only be at minimum 0, therefore r cannot be -7.
Therefore our most optimized r is when x = 10.
Of course, x can go in the opposite direction, since we did not bound Z only to non-negative integers.

Thus we have shown an example of the division algorithm. Now that we understand the values that set S
can contain, even though we have provided proof, we must still prove this through math and generalize it. And
that’s exactly what we spend the rest of the proof doing. We answer questions in this proof such as, what if a is
greater than 0 or less than 0? And what happens if r is greater than b, which we show that r is not the smallest
integer which means we can technically have a solution of

Example 2.2.2

𝑎 = 81

𝑏 = 8

𝑥𝑖𝑠𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑟 = 𝑎 − 𝑏𝑥
If we let x = 1 for example, then r = 73.
If we let x = 4 for example, then r = 49.
If we let x = 10 for example, then r = 1.
If we let x = 11 for example, then r = -7.
However, r can only be at minimum 0, therefore r cannot be -7.
Therefore our most optimized r is when x = 10.
Of course, x can go in the opposite direction since we did not bound Z only to non-negative integers.

Thus we have shown an example of the division algorithm. Now that we understand the values that set S
can contain, even though we have provided proof, we must still prove this through math and generalize it. And
that’s exactly what we spend the rest of the proof doing. We answer questions in this proof such as, what if a is
greater than 0 or less than 0? And what happens if r is greater than b, which we show that r is not the smallest



integer which means we can technically have a solution of

𝑎 = 200

𝑏 = 2

𝑥 = 10

𝑟 = 180,

and this is a valid solution by the division algorithm if we did allow r to not be the smallest, even though we
know it’s not exactly true.

Proposition 2.2.1 Uniqueness in the Division Algorithm

The integers 𝑞, 𝑟 ∈ ℤ, in the division algorithm are unique.

Proof: Given 𝑎 ∈ ℤ and 𝑏 ∈ ℤ⩾0, Suppose 𝑎 = 𝑞1𝑏 + 𝑟1, such that 𝑞1 , 𝑟1 ∈ ℤ and 0 ⩽ 𝑟1 < 𝑏. Also suppose that
𝑎 = 𝑞2𝑏 + 𝑟2, such that 𝑞2 , 𝑟2 ∈ ℤ and 0 ⩽ 𝑟2 < 𝑏.
Claim: 𝑞1 = 𝑞2 and 𝑟1 = 𝑟2.

𝑎 = 𝑞1𝑏 + 𝑟1
−𝑎 = 𝑞2𝑏 + 𝑟2
0 = (𝑞1 − 𝑞2)𝑏 + 𝑟1 − 𝑟2

𝑟2 − 𝑟1 = (𝑞1 − 𝑞2)𝑏.

Thus, −𝑏 < 𝑟2 − 𝑟1 < 𝑏. Therefore −𝑏 < (𝑞1 − 𝑞2)𝑏 < 𝑏, then −1 < 𝑞1 − 𝑞2 < 1. Since 𝑞1 , 𝑞2 ∈ ℤ, and the only
integer that is greater than -1 and less than 1 is 0, then 𝑞1 − 𝑞2 = 0. Therefore 𝑞1 = 𝑞2. Then

0 = (𝑞1 − 𝑞2)𝑏 + 𝑟1 − 𝑟2
0 = (0)𝑏 + 𝑟1 − 𝑟2
0 = 𝑟1 − 𝑟2.

Thus 𝑟1 = 𝑟2. ■

This proposition demonstrates that q and r are unique, and this is really important to show in math when
we are proving an algorithm. Regardless of what q and r are, if they exist, then they are unique, sounding trivial
but as we see the proof is rather. . . less trivial. This one is a bit more straightforward therefore there won’t be
a conceptualizing analysis on this proof. This is also just further building the proof techniques we have at our
arsenal and allowing one to understand the algorithm through and through.

Definition 2.2.1: Logical Divide

Suppose 𝑎, 𝑏 ∈ ℤ. Let us define the logical divide of b divides a as 𝑏 | 𝑎.
If ∃𝑞 ∈ ℤ in this logic, then 𝑎 = 𝑏𝑞. If 𝑏 = 0, 𝑎 ≠ 0, then 𝑏 ∤ 𝑎, because 0𝑞 = 0, and 𝑎 ≠ 0.

There isn’t a strict name for this definition as far as I know, therefore I created a name for it. Logical
Divide. It is the logical notation for the phrase ”x divides y”, and it is trivial to Abstract Algebra. It is slightly
different than say previous computationally algebraic courses, where one just computes some division and may
even end up with a completed or incomplete (rational or not) answer. Note that up to now we are only sticking
with the integers, and this is a really important fact to keep in mind. Therefore when we say that 2—4, then we
really mean that 4 is evenly divisible by 2, but 3 does not divide 4, even if we can write it in terms of a decimal.
Another way we can explain this topic is through the division algorithm. If it doesn’t look similar, we can write
b divides a as, a = bq + r, where r = 0. Now does this mean that if a = 0, does 0—0? Honestly, it’s a debated
topic in algebra and number theory, some may state yes, others may state no. But what’s important, is that the
majority say no, the same reason why your calculator cannot divide 0 from 0.
Now if a = 0 and b—a, there is an integer q in Z, such that a = bq and q is unique. This is proof we will not get
into it for the sake of saving time and space, but it is a nice practice exercise.
One proof we will be looking at is:



Lemma 2.2.1

Assume 𝑏 | 𝑎, 𝑏 ≠ 0, so 𝑎 = 𝑏𝑞 for 𝑞 ∈ ℤ, then −𝑏 | 𝑎.

Proof: 𝑎 = (−𝑏)(−𝑞), so −𝑏 | 𝑎, for 𝑞 ∈ ℤ. Similarly 𝑏 | −𝑎. ■

This is just a fun fact to rationalize that these four results are possible: b—a, b—-a, -b—a, -b—-a. Now
on a larger note, we must prove transitivity through logical divides.

Lemma 2.2.2

Suppose 𝑎, 𝑏, 𝑐 ∈ ℤ. If 𝑐 | 𝑏 and 𝑏 | 𝑎¡ then 𝑐 | 𝑎.

Proof: ∃𝑞1 , 𝑞2 ∈ ℤ, such that 𝑎 = 𝑏𝑞1 and 𝑏 = 𝑐𝑞2. So 𝑎 = (𝑐𝑞2)𝑞1 = 𝑐(𝑞2𝑞1). So 𝑐 | 𝑎. ■

One thing to note is that divisibility is anti-reflexive, which means if b—a and a do not equal b or -b, then
a does not divide b. There is a statement that could be said about linear combinations of a and b. If there is an
integer c that divides both a and b, then there exists integers x and y, such that c—xa+yb. Therefore, c divides
any linear combination of a and b. The proof of this is similar to the previous proof before. The idea is if you
can write a and b in terms of c, then the linear combination could also be written in terms of c. Thus showing
divisibility. Try to implement this on your own. If it hasn’t been noticeable, there is nothing more to learning a
course outside of learning the definitions and theorems.

Definition 2.2.2: Greatest Common Divisor

The GCD of a and b, written as 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑, and 𝑑 > 0 such that 𝑑 | 𝑎 and 𝑑 | 𝑏 and if 𝑐 | 𝑎 and 𝑐 | 𝑏,
then 𝑐 | 𝑑, and 𝑐 ⩽ 𝑑.

The greatest common divisor is a concept that we have learned in grade school. If we recall, we can write
the gcd(4,6) = 2, since 2—4 and 2—6.

Theorem 2.2.2 Linear Combinations of GCD

Let 𝑎, 𝑏 ∈ ℤ, not both 0. Let there be set S such that

𝑆 := {𝑥𝑎 + 𝑦𝑏 : 𝑥, 𝑦 ∈ ℤ, 𝑥𝑎 + 𝑦𝑏 > 0

Then 𝑆 ≠ 𝜙 and 𝑆 ⊆ ℤ⩾0, then by the well-ordering principle, S has the smallest element called d. Then
𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏).
The key statement is if 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏), then ∃𝑥, 𝑦 ∈ ℤ such that 𝑑 = 𝑥𝑎 + 𝑦𝑏.

Proof: Let 𝑆 ≠ 𝜙. ∃𝑑 ∈ 𝑆 such that ∀𝑡 ∈ 𝑆, 𝑑 ⩽ 𝑡 since 𝑑 ∈ 𝑆. Then ∃𝑥, 𝑦 ∈ ℤ such that 𝑑 = 𝑥𝑎 + 𝑦𝑏. Now our
goal is to prove that 𝑑 | 𝑎.
If 𝑑 ∈ 𝑆, then 𝑑 > 0, so ∃𝑞, 𝑟 ∈ ℤ and 𝑎 = 𝑞𝑑 + 𝑟 when 0 ⩽ 𝑟 ⩽ 𝑑.
Suppose 𝑟 > 0, then

𝑟 = 𝑎 − 𝑞𝑑
= 𝑎 − 𝑞(𝑥𝑎 + 𝑦𝑏)
= 𝑎 − 𝑞𝑥𝑎 − 𝑞𝑦𝑏
= (1 − 𝑞𝑥)𝑎 − (𝑞𝑦)𝑏.

So r is a linear combination of a and b. Since 𝑟 > 0 and 𝑟 < 𝑑, then 𝑟 ∈ 𝑆, contradicting the assumption that d
is the smallest element of S.
If 𝑟 = 0, then 𝑎 = 𝑞𝑑, therefore 𝑑 | 𝑎.
Similarly we can show 𝑑 | 𝑏.
Now suppose 𝑐 | 𝑎 and 𝑐 | 𝑏, then 𝑐 | 𝑥𝑎 + 𝑦𝑏, which is a linear combination of a and b, which equals d. Therefore
d is unique.
Suppose 𝑡 > 0 has the property that if 𝑐 | 𝑎, 𝑐 | 𝑏, then 𝑐 | 𝑡, and 𝑡 | 𝑎, 𝑡 | 𝑏, then 𝑡 | 𝑑 and 𝑑 | 𝑡.
Therefore 𝑑 = 𝑡. ■



If the gcd of any two integers ever equals 1, then we say that a and b are relatively prime. If they are
relatively prime, then by the previous theorem, the linear combination will also equal 1.

Theorem 2.2.3

Suppose 𝑔𝑐𝑑(𝑎, 𝑏) = 1 and 𝑐 ∈ ℤ such that 𝑎 | 𝑏𝑐, then 𝑎 | 𝑐.

Proof: Since the 𝑔𝑐𝑑(𝑎, 𝑏) = 1, then ∃𝑥, 𝑦 ∈ ℤ such that 𝑥𝑎 + 𝑦𝑏 = 1. Therefore,

𝑥𝑎 + 𝑦𝑏 = 1

𝑐𝑥𝑎 + 𝑐𝑦𝑏 = 𝑐

(𝑐𝑥)𝑎 + 𝑦(𝑏𝑐) = 𝑐,

then 𝑎 | 𝑎 and 𝑎 | 𝑏𝑐, therefore 𝑎 | 𝑐. ■

The last thing we will be looking at in this section is the extended gcd algorithm. The idea behind this is
to use the gcd algorithm and then reverse the process in order to find the factors of the linear combination. This
is more of a computational math. The GCD algorithm can be written in terms of the Division Algorithm and
continuing to find the terms that make up the two factors. An idea of this is using the gcd(109, 26).

109 = 26(4) + 5

Because 109 can be split up by 26 and have a remainder of 5, this is no different than having a gcd of (26,5).

26 = 5(5) + 1

Now because we are left with a remainder of one, and one can go into any number, then 1 is our final answer for
the gcd of (109, 26). This is a way to do the gcd algorithm through division. But what if we are to set this the
other way around?

1 = 26–5(5)
Similar to what we did before, we are shifting all elements in the equation to create the one above.

1 = 26–5(109–26(4))

1 = (−5)(109) + (21)(26)
Thus we have found the linear combination factors of the equation.

2.3 Primes

In the realm of mathematics, prime numbers are the true VIPs. The Fundamental Theorem of Arithmetic serves
as a bouncer taking off the cheap costumes that all the composites wear making sure only primes get through.
In this post, we will look at how the FTA classifies numbers and how the primes are the real deal when it comes
to these costumes. I’m excited about this topic because it practically is my field of interest!

Definition 2.3.1: Prime Integer

Let 𝑝 ∈ ℤ. p is prime if the only divisors of p are −1, 1,−𝑝, 𝑝 and 𝑝 ≠ −1, 0, 1.

This definition has two criteria, 1) the divisors of p are restricted; 2) p is not equal to restricted values.
We use the term restricted to denote more so a finite set of values, but this sounds like a stronger claim.
(1) By the only divisors of p, we mean that if you are to divide p by any other integer, using the division algorithm,
we will get a remainder. Using the previous content learned, we will learn that the GCD of p and any relatively
prime, or co-prime, is 1.
(2) When we have p not equal to a select few values, then this ensures that the prime number does not contradict
the first criterion. This definition helps identify and distinguish prime numbers from other integers.



Theorem 2.3.1 Euclid’s Lemma

Suppose p is prime, and 𝑏, 𝑐 ∈ ℤ with 𝑝 |𝑏𝑐, then 𝑝 |𝑏 or 𝑝 |𝑐. Proof. Suppose 𝑝 ∤ 𝑏. We claim that the
𝑔𝑐𝑑(𝑝, 𝑏) = 1.‘

Proof: Suppose 𝑑 = 𝑔𝑐𝑑(𝑝, 𝑏). Then 𝑑 > 0, 𝑑 |𝑝, 𝑑 |𝑏, and since p is prime, then 𝑑 = 1 or 𝑑 = 𝑝. But 𝑑 ≠ 𝑝 since
𝑝 ∤ 𝑏, so 𝑑 = 1. Let’s assume that p is prime. Then p would have some divisors 𝑑, 𝑡 ∈ ℤ, such that 𝑝 = 𝑑𝑡. Then
according to our assumption, if p is prime, then the only divisors are −1, 1𝑎𝑛𝑑 − 𝑝, 𝑝. Therefore, when 𝑝 |𝑑, then
𝑑 = −𝑝, 𝑝 and 𝑡 = −1, 1. Or when 𝑝 |𝑡, then 𝑡 = −𝑝, 𝑝, and 𝑑 = −1, 1. Thus p is prime. ■

This ”lemma” is something Euclid used to prove something bigger. The name stuck as ”Euclid’s Lemma”,
however, it is the foundation for fields such as Number Theory. Its more appropriate name is the Fundamental
Property of Prime Numbers. It sounds like a really basic lemma, but it does undermine its true essence. It
shows that prime numbers are the building blocks of all integers and that a number divisible by a prime must be
divisible by that prime individually or by another prime factor.

Theorem 2.3.2 Fundamental Theorem of Arithmetic (FTA)

If 𝑛 ∈ ℤ and 𝑛 ≠ −1, 0, 1, then n can be written uniquely as a product of primes up to order and sign.

In other words, the theorem tells us that every composite number can be broken down into a unique set
of prime factors. These prime factors are the building blocks of all positive integers. The uniqueness of the
factorization means that no matter how you break down a composite number into its prime factors, the set of
primes you obtain will always be the same, even if the order and sign of the primes might differ.

Lemma 2.3.1

Suppose p is prime. 𝑎1 , 𝑎2 , 𝑎3 , . . . , 𝑎𝑛 ∈ ℤ such that 𝑝 |𝑎1𝑎2. . . 𝑎𝑛 . Then 𝑝 |𝑎1 for some 𝑖 ∈ ℕ.

Proof of Lemma: By induction on i, let 𝑛 = 1. If 𝑝 |𝑎1, then 𝑝 |𝑎1 is true. Let 𝑛 = 2. If 𝑝 |𝑎1𝑎2, then 𝑝 |𝑎1 or
𝑝 |𝑎2 is true. Suppose it’s true for given 𝑛 = 𝑘. Now let 𝑛 = 𝑘 + 1. If 𝑝 |𝑎1𝑎2 . . . 𝑎𝑘𝑎𝑘+1 = 𝑝 |(𝑎1𝑎2 . . . 𝑎𝑘)𝑎𝑘+1, then
𝑝 |(𝑎1𝑎2 . . . 𝑎𝑘) or 𝑝 |𝑎𝑘+1. By induction, 𝑝 |𝑎𝑖 for some 𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘, or 𝑝 |𝑎𝑘+1. ■

Now note that we haven’t quite proved the Fundamental Theorem of Arithmetic, but something we have
shown is a corollary of Euclid’s Lemma, which relates to FTA a little bit. So let’s go ahead and link these two
out.

Proof of FTA Theorem:
Claim 1. Existence of Factorization:
Suppose 𝑛 ∈ ℤ and 𝑛 ≠ −1, 0, 1. Then there exists primes 𝑝1 . . . 𝑝𝑘 such that 𝑛 = 𝑝1 . . . 𝑝𝑘 . If 𝑛 ∈ ℤ is a negative
integer, then 𝑛 = −𝑚 is a positive integer. If 𝑛 = 𝑝1 . . . 𝑝𝑘 , p prime, then 𝑛 = (−𝑝1)𝑝2𝑝3 . . . 𝑝𝑘 is also a product
of primes. So 𝑛 ∈ ℕ is true for all 𝑛 ∈ ℤ.

Proof of Claim 1: Suppose n is not prime, then ∃𝑎 > 1. So 𝑛 = 𝑎𝑏, given 𝑏 ∈ ℤ and 𝑏 > 1. Now apply strong
induction on a and b.
𝑎 = 𝑝1 . . . 𝑝𝑟 , 𝑝𝑖 prime
𝑏 = 𝑞1 . . . 𝑞𝑠 , 𝑞𝑖 prime
𝑛 = 𝑎𝑏 = 𝑝1𝑞1 . . . 𝑝𝑟𝑞𝑠 as a product of primes, i.e. if 𝑛 = 𝑝1 . . . 𝑝𝑟 = 𝑞1 . . . 𝑞𝑠 , then 𝑟 = 𝑠 and after rearranging
𝑟𝑖 = −𝑞𝑖 , 𝑞𝑖 , for each 𝑖. ■

Claim 2. Uniqueness of Factorization:
From existence, we can show uniqueness. By induction on the 𝑚𝑖𝑛{𝑟, 𝑠}. Let our base case be 𝑘 = 1. We can
assume 𝑟 = 1, so 𝑝1 = 𝑞1 . . . 𝑞𝑘 , 𝑝1 prime, all 𝑞𝑖 prime. So 𝑠 = 1, 𝑝1 = 𝑞1.

Proof of Uniqueness: Assume uniqueness for 𝑘, prove for 𝑘+1. Suppose 𝑛 = 𝑝1 . . . 𝑝𝑟 = 𝑞1 . . . 𝑞𝑠 , 𝑚𝑖𝑛{𝑟, 𝑠} =
𝑘 + 1, as we can assume that 𝑟 = 𝑘 + 1. Then 𝑝1 . . . 𝑝𝑘𝑝𝑘+1 = 𝑞1 . . . 𝑞𝑠 . So 𝑝1𝑞1 . . . 𝑞𝑠 , assume 𝑝1 = 𝑞1. So
𝑝1 = −𝑞1 , 𝑞1. Then let’s replace this singular prime, 𝑝1 . . . 𝑝𝑘+1 = (𝑝1)𝑞2 . . . 𝑞𝑠 . Then 𝑝1(𝑝2 . . . 𝑝𝑘+1) = 𝑝1(𝑞2 . . . 𝑞𝑠).
By cancellation law, then we can cross out the 𝑝1’s. Then the minimum number of terms is k. By the induction



hypothesis, 𝑠 = 𝑘 + 1, and after rearranging 𝑞𝑖 = 𝑝𝑖 all 𝑖 > 1. So uniqueness is trying for k + 1. So true for all
𝑘 ∈ ℕ. ■

The uniqueness of the factorization means that no matter how you break down a composite number into
its prime factors, the set of primes you obtain will always be the same, even if the order of the primes might
differ. For example, consider the number 60. The Fundamental Theorem of Arithmetic tells us that 60 can be
expressed as a product of prime factors uniquely:

60 = 2 ∗ 2 ∗ 3 ∗ 5

This factorization is unique for the number 60. You can change the order of the factors, but the set of primes (2,
3, and 5) will remain the same.

The Fundamental Theorem of Arithmetic tells us that every positive integer greater than 1 can be expressed
uniquely as a product of prime factors. This unique factorization into prime numbers underpins countless math-
ematical discoveries, making it a cornerstone of number theory and algebra.

2.4 Exercises

Example 2.4.1 (Exercise 1.)

Let 𝑎 be any integer and let 𝑏 and 𝑐 be positive integers. Suppose that when 𝑎 is divided by 𝑏, the quotient
is 𝑞 and the remainder is 𝑟, so that if 𝑎𝑐 is divided by 𝑏𝑐, show that the quotient is 𝑞 and the remainder
is 𝑟𝑐.

Example 2.4.2 (Exercise 2.)

Let 𝑎, 𝑏, 𝑐, 𝑞 be as in the previous exercise. Suppose that when 𝑞 is divided by 𝑐 the quotient is 𝑘. Prove
that when 𝑎 is divided by 𝑏𝑐, then the quotient is also 𝑘.

Example 2.4.3 (Exercise 3.)

Let 𝑛 be a positive integer. Prove that 𝑎 and 𝑐 leave the same remainder when divided by 𝑛 if and only
if 𝑎 − 𝑐 = 𝑛𝑘 for some integer k.

Example 2.4.4 (Exercise 4.)

Prove that 𝑏 |𝑎 if and only if (−𝑏)|𝑎.

Example 2.4.5 (Exercise 5.)

If 𝑎 |𝑏 and 𝑏 |𝑐, prove then 𝑎 |𝑐.

Example 2.4.6 (Exercise 6.)

If 𝑎 |𝑏 and 𝑎 |𝑐, prove that 𝑎 |(𝑏 + 𝑐).

Example 2.4.7 (Exercise 7.)

If 𝑎 |𝑏 and 𝑎 |𝑐, prove that 𝑎 |(𝑏𝑟 + 𝑐𝑡) for any 𝑟, 𝑡 ∈ ℤ

Example 2.4.8 (Exercise 8.)

Given 𝑎, 𝑏 are non-zero. Suppose 𝑎 |𝑏 and 𝑏 |𝑎, then prove that 𝑎 = ±𝑏.



Example 2.4.9 (Exercise 9.)

If 𝑎 |𝑏 and 𝑐 |𝑑, then 𝑎𝑐 |𝑏𝑑.

Example 2.4.10 (Exercise 10.)

If 𝑎 < 0, find 𝑔𝑐𝑑(𝑎, 0).

Example 2.4.11 (Exercise 11.)

Prove that 𝑔𝑐𝑑(𝑛, 𝑛 + 1) = 1 for every integer 𝑛.

Example 2.4.12 (Exercise 12.)

If 𝑎 |𝑐 and 𝑏 |𝑐, must 𝑎𝑏 |𝑐?

Example 2.4.13 (Exercise 13.)

Given 𝑛 ∈ 𝑍, what are the possible values of 𝑔𝑐𝑑(𝑛, 𝑛 + 2).

Example 2.4.14 (Exercise 14.)

If 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑, prove that 𝑔𝑐𝑑( 𝑎
𝑑
, 𝑏
𝑑
) = 1.

Example 2.4.15 (Exercise 15.)

Suppose 𝑔𝑐𝑑(𝑎, 𝑏) = 1. If 𝑎 |𝑐 and 𝑏 |𝑐, then prove that 𝑎𝑏 |𝑐.

Example 2.4.16 (Exercise 16.)

If 𝑔𝑐𝑑(𝑎, 𝑐) = 1 and 𝑔𝑐𝑑(𝑏, 𝑐) = 1, prove that 𝑔𝑐𝑑(𝑎𝑏, 𝑐) = 1.

Example 2.4.17 (Exercise 17.)

If 𝑎 |𝑐 and 𝑏 |𝑐 and 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑, prove that 𝑎𝑏 |𝑐𝑑.

Example 2.4.18 (Exercise 18.)

If 𝑎 > 0 and 𝑏 > 0, prove that 𝑙𝑐𝑚[𝑎, 𝑏] = 𝑎𝑏
𝑔𝑐𝑑(𝑎,𝑏) .

Example 2.4.19 (Exercise 19.)

Verify that 25 − 1 and 27 − 1 are prime.

Example 2.4.20 (Exercise 20.)

If 𝑝 > 5 is prime and 𝑝 is divided by 10, show that the remainder is 1, 3, 7, or 9.

Example 2.4.21 (Exercise 21.)

Let p be an integer other than 0,±1 Prove that p is prime if and only if for each 𝑎 ∈ ℤ either (𝑎, 𝑝) = 1 or
𝑝 |𝑎.



Example 2.4.22 (Exercise 22.)

Let 𝑝 be an integer other than 0,±1 with this property: Whenever b and c are integers such that 𝑝 | 𝑏𝑐,
then 𝑝 | 𝑏 or 𝑝 | 𝑐. Prove that 𝑝 is prime.

Example 2.4.23 (Exercise 23.)

If 𝑎 = 𝑝𝑟11 𝑝
𝑟2
2 . . . 𝑝

𝑟𝑖
𝑘

and 𝑏 = 𝑝𝑠11 𝑝
𝑠2
2 . . . 𝑝

𝑠𝑖
𝑘
, where 𝑝1 , 𝑝2 , . . . , 𝑝𝑘 are distinct positive primes and each

𝑟𝑖 , 𝑠𝑖 ⩾ 0, then prove that

𝑔𝑐𝑑(𝑎, 𝑏) = 𝑝𝑛11 𝑝𝑛22 . . . 𝑝
𝑛𝑖
𝑘
, where for each i, 𝑛𝑖 = 𝑚𝑖𝑛{𝑟𝑖 , 𝑠𝑖}.

Example 2.4.24 (Exercise 24.)

If 𝑎 = 𝑝𝑟11 𝑝
𝑟2
2 . . . 𝑝

𝑟𝑖
𝑘

and 𝑏 = 𝑝𝑠11 𝑝
𝑠2
2 . . . 𝑝

𝑠𝑖
𝑘
, where 𝑝1 , 𝑝2 , . . . , 𝑝𝑘 are distinct positive primes and each

𝑟𝑖 , 𝑠𝑖 ⩾ 0, then prove that

𝑙𝑐𝑚[𝑎, 𝑏] = 𝑝𝑡11 𝑝
𝑡2
2 𝑝

𝑡3
3 . . . 𝑝

𝑡𝑖
𝑘
, where 𝑡𝑖 = maximum of 𝑟𝑖 , 𝑠𝑖 .

Example 2.4.25 (Exercise 25.)

Prove that 𝑎 | 𝑏 if and only if 𝑎2 | 𝑏2.

Example 2.4.26 (Exercise 26.)

Let 𝑝 be prime and 1 < 𝑘 < 𝑝. Prove that 𝑝 divides the binomial coefficient
(𝑝
𝑘

)
.



Chapter 3

Congruence Classes in ℤ

3.1 Congruences

When we talk about congruence classes mod n, we’re essentially grouping integers based on the remainder they
leave when divided by n. This creates a classification system, where numbers that share the same remainder
form a class. It’s like organizing a grand masquerade ball, where every guest wears a mask that matches their
remainder modulo n, allowing them to join a specific group similar to classes/grades in school.

Definition 3.1.1: Congruence

Suppose 𝑛 ∈ ℕ. If 𝑎, 𝑏 ∈ ℤ, we define 𝑎 ≡ 𝑏 mod 𝑛 as a congruence. We say ”a is congruent to b modulo
n” if and only if 𝑛 |(𝑏 − 𝑎).

Lemma 3.1.1

𝑎 ≡ 𝑏 mod 𝑛 then 𝑛 |𝑎 − 𝑏 if and only if there exists 𝑞 ∈ ℤ such that 𝑏 = 𝑞𝑛 + 𝑎. Prove this exercise on
your own.

Definition 3.1.2: Equivalence Relation

Given 𝑆 is a set and ∼ is a relation on S. ∼ is an equivalence relation if for all 𝑎, 𝑏, 𝑐 ∈ 𝑆

1. 𝑎 ∼ 𝑎 (reflexive);

2. If 𝑎 ∼ 𝑏, then 𝑏 ∼ 𝑎 (symmetric);

3. If 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐, then 𝑎 ∼ 𝑐 (transitive).

We will learn and find uses for the equivalence relation, but to connect it to the topics at hand, 𝑎 ≡ 𝑏 is
an equivalence relation that envelopes congruences and what we will learn about congruence classes. Essentially,
𝑎 ≡ 𝑏 is the same as 𝑎 ∼ 𝑏.

Lemma 3.1.2

Congruence mod n is an equivalence relation.

Proof: Case 1.
Let 𝑎 ∈ ℤ, 𝑎 ≡ 𝑎 mod 𝑛, because 𝑎 − 𝑎 = 0 and 𝑛 |0.
Case 2.
Suppose 𝑎 ≡ 𝑏 mod 𝑛 then 𝑛 |𝑎− 𝑏 and due to properties of the logical divide, 𝑛 |𝑏− 𝑎. Thus 𝑏 ≡ 𝑎 mod 𝑛. Case
3.
Suppose 𝑎, 𝑏, 𝑐 ∈ ℤ, 𝑎 ≡ 𝑏 mod 𝑛 and 𝑏 ≡ 𝑐 mod 𝑛, so 𝑛 |𝑏 − 𝑎 and 𝑛 |𝑐 − 𝑏, so 𝑛 |(𝑎 − 𝑏) + (𝑏 − 𝑐) = 𝑛 |𝑎 − 𝑐. Thus
𝑎 ≡ 𝑐 mod 𝑛. ■
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Definition 3.1.3: Equivalence Classes

Suppose ∼ is an equivalence relation on 𝑆 if 𝑎 ∈ 𝑆. The equivalence class of a is [𝑎] := {𝑏 ∈ 𝑆 : 𝑏 ∼ 𝑎.

Let’s consider an equivalence relation ∼ on the set of integers ℤ, where 𝑎 ∼ 𝑏 if and only if 𝑎 ≡ 𝑏 mod 5
(congruence modulo 5). In this case:

[2]5 = {. . . , 8, 3, 2, 7, 12, . . .}
This is the equivalence class of 2, consisting of all integers that are congruent to 2 modulo 5. Equivalence classes
provide a systematic way of grouping elements in a set based on their relationships under an equivalence relation.

Definition 3.1.4: Congruence Classes

For a congruence mod n, if 𝑎 ∈ ℤ, [𝑎] := {𝑏 ∈ ℤ : 𝑏 ≡ 𝑎 mod 𝑛}.

Congruence classes provide a systematic way of grouping integers based on their remainders when divided
by n under a congruence relation. They are essential in modular arithmetic, number theory, and algebraic struc-
tures, contributing to a deeper understanding of mathematical relationships and structures. Two equivalence
classes are the same if they include each other, for example, if [𝑎] = [𝑏], then 𝑎 ∈ [𝑏] and 𝑏 ∈ [𝑎]. The set S is
the distinct union of its distinct equivalence classes. I.e. every element of S is in some equivalence class.

Proposition 3.1.1

If 𝑎, 𝑏 ∈ 𝑆, then either [𝑎] = [𝑏] or [𝑎]⋂[𝑏] = 𝜙.

Proposition 3.1.2

[𝑎] = [𝑏] ⇐⇒ 𝑎 ≡ 𝑏 mod 𝑛.

Proof.: ( =⇒ ). [𝑎] := {𝑥 : 𝑥 ≡ 𝑎 mod 𝑛}. so 𝑎 ∈ [𝑎] since 𝑎 ≡ 𝑎 mod 𝑛. So 𝑎 ∈ [𝑏], [𝑏] := {𝑥 ∈ ℤ : 𝑥 ≡ 𝑏
mod 𝑛}, so 𝑎 ≡ 𝑏 mod 𝑛.
( ⇐= ). Case 1. [𝑎] ⊆ [𝑏].
Let 𝑐 ∈ [𝑎], then 𝑐 ≡ 𝑎 mod 𝑛. By transitivity, 𝑐 ≡ 𝑏 mod 𝑛 so 𝑐 ∈ [𝑏] so [𝑎] ⊆ [𝑏].
Similarly, we can show [𝑏] ⊆ [𝑎]. Thus [𝑎] = [𝑏]. ■

This relationship provides a clear connection between the equality of equivalence classes and the congruence
of integers modulo n.

Proof of Proposition 3.0.1: We need to prove if [𝑎]⋂[𝑏] ≠ 𝜙 then [𝑎] = [𝑏]. Let 𝑐 ∈ [𝑎]⋂[𝑏], then 𝑐 ≡ 𝑎
mod 𝑛, 𝑐 ≡ 𝑏 mod 𝑛. So by the previous proposition, [𝑐] = [𝑎] = [𝑏], so [𝑎] = [𝑏]. ■

Proposition 3.1.3

Fix 𝑛 ⩾ 2. The distinct congruence classes modulo n are [0], [1], . . . , [𝑛−1]. In fact, if 𝑎 ∈ ℤ, then [𝑎] = [𝑟]
where r is the remainder when a is divided by r.

Proof: If 𝑎 = 𝑞𝑛 + 𝑟, 0 ⩽ 𝑟 ⩽ 𝑛 − 1, then 𝑎 ≡ 𝑟 mod 𝑛 so [𝑎] = [𝑟]. By the division algorithm, [𝑎] must be one
of these classes. By uniqueness, these classes are unique. ■



3.2 Modular Arithmetic

Definition 3.2.1: Modular Arithmetic

Fix 𝑛 ∈ ℤ⩾2. Define addition and multiplication on congruence classes mod n.

[𝑎] + [𝑏] = [𝑎 + 𝑏]

[𝑎] · [𝑏] = [𝑎𝑏]

Given this definition, it seems a little ambiguous if you really sit down and analyze it but we come to learn
that this gives us properties to also allow this arithmetic to be well-defined. This definition shows that it is closed
under addition but also multiplication and I will leave that up to the reader to figure out how to find such values.

Theorem 3.2.1

If 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, then 𝑎 + 𝑏 ≡ 𝑐 + 𝑑 mod 𝑛 and 𝑎𝑏 ≡ 𝑐𝑑 mod 𝑛.

Proof: Given 𝑛 |𝑐 − 𝑎, 𝑛 |𝑑 − 𝑏, then 𝑛 |(𝑐 − 𝑑) − (𝑎 + 𝑏), so 𝑛 |(𝑐 − 𝑎) + (𝑑 − 𝑏). Thus 𝑛 |𝑐 − 𝑎, 𝑛 |𝑑 − 𝑏, 𝑛 |𝑑(𝑐 − 𝑎) +
𝑎(𝑑 − 𝑏), 𝑛 |𝑐𝑑 − 𝑎𝑏 + 𝑐𝑑 − 𝑎𝑏, therefore 𝑛 |𝑐𝑑 − 𝑎𝑏. ■

Theorem 3.2.2 Well-Defined Modular Arithmetic

Modular arithmetic is well-defined.

Proof: Suppose [𝑎] = [𝑐] and [𝑏] = [𝑑]. Then by the previous theorem, [𝑎 + 𝑏] = [𝑐 + 𝑑] and [𝑎𝑏] = [𝑐𝑑]. ■

Definition 3.2.2: ℤ𝑛

The set of congruence classes mod n with addition is defined by:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 10

2 2 3 10 11

3 3 10 11 12

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Commutative, associative, and distributive hold for ℤ𝑛 .
The additive identity is [0] + [𝑎] = [𝑎].
The multiplicative identity is [1𝑎] = [𝑎].

ℤ𝑛 := {[𝑎] : 𝑎 ∈ ℤ} = {[0], [1], . . . , [𝑛 − 1]}.

Axiom 3.2.1 Additive inverses in ℤ𝑛

Every element in ℤ𝑛 has an additive inverse.

[𝑎] + [−𝑎] = 0



3.3 Units and Divisors

Definition 3.3.1: Units in Congruence Classes

[𝑎] is a unit if [𝑎] has a multiplicative inverse.

Theorem 3.3.1

[𝑎] is a unit if and only if 𝑔𝑐𝑑(𝑎, 𝑛) = 1.

Proposition 3.3.1

All classes in ℤ𝑝 are units.

Proof of Proposition 3.2.1: Suppose [𝑎] ∈ ℤ𝑝 is a unit so ∃𝑥 ∈ ℤ such that [𝑥𝑎] = 1. Then

𝑥𝑎 ≡ 1 mod 𝑝 ⇐⇒ 𝑥𝑎 = 1 + 𝑞𝑝
⇐⇒ 𝑥𝑎 − 𝑞𝑝 = 1

⇐⇒ 𝑔𝑐𝑑(𝑎, 𝑝) = 1

■

Easy to show the opposite by showing a multiplicative inverse in the ℤ𝑝 . So [𝑎] has a multiplicative inverse.
This proposition, using 𝑛 ≠ 𝑝 will show it is true for the Theorem 3.2.3.
To show that [𝑎] is a unit in ℤ32 and find [𝑎]−1 in ℤ32. Let 𝑎 = 4 and find an 𝑥 ∈ ℤ such that 𝑥4 + 𝑞32 = 1, and
use the Extended Euclidean Algorithm to find this inverse. We find that 𝑥 = −7, which means [𝑥] = [−7] = [25].

Definition 3.3.2: Zero-Divisors

[𝑎] is a zero-divisor in ℤ𝑛 if ∃[𝑥] ≠ [0], with [𝑎𝑥] = [0].

Theorem 3.3.2

[𝑎] is a zero-divisor in ℤ𝑛 if and only if the 𝑔𝑐𝑑(𝑎, 𝑛) ≠ 1.

Proof: Let’s prove the contrapositive. Suppose 𝑔𝑐𝑑(𝑎, 𝑛) = 1, then [𝑎] is not a zero-divisor. Assume 𝑔𝑐𝑑(𝑎, 𝑛) =
1. Suppose 𝑏 ∈ ℤ with [𝑎𝑏] = [0]. [𝑎] is not a zero-divisor if and only iff [𝑎𝑏] = [0] implies [𝑏] = [0]. By
Theorem 3.2.3, [𝑎] is a unit in ℤ𝑛 , so there exists 𝑥 ∈ ℤ, such that [𝑥𝑎] = 1. So [𝑥]([𝑎𝑏]) = [𝑥0] = [0] or
[𝑥𝑎][𝑏] = [1][𝑏] = [𝑏] = [0]. Conversely, suppose 𝑔𝑐𝑑(𝑎, 𝑛) = 𝑑 > 1. ■

For example, if we take ℤ12, then since 𝑔𝑐𝑑(4, 12) = 4, then [4] is a zero-divisor.

3.4 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 4

Rings

4.1 Rings

Definition 4.1.1: Ring

A set with +,×, called R. Addition has the properties of being commutative and associative. Multiplication
is at minimum associative, and together distributive. There is an additive identity, usually denoted by 0𝑅.
But there is also a multiplicative identity, denoted by 1𝑅. There exists an additive inverse in R, b, such
that 𝑎 + 𝑏 = 0, and are unique.

Definition 4.1.2: Subrings

S is a subring of R if for all 𝑎, 𝑏 ∈ 𝑆, has closure under addition and multiplication. It must also have the
additive identity and additive inverses per each element.

For example, in an introduction to proofs class we may have seen that

ℤ ⊆ ℚ ⊆ ℚ ⊆ ℝ ⊆ ℂ.

We learned them assets, but looking at properties of rings and subrings, consider them all rings and subrings of
the order. However, if we wanted to look outside of these number systems, let’s look at matrices:{[

𝑎 𝑏
−𝑏 𝑎

]
: 𝑎, 𝑏 ∈ ℚ

}
Note that this is a subring of Mat2(ℝ).

Definition 4.1.3: Field

A commutative ring, 𝔽, 1 ∈ 𝔽. if 𝑎 ∈ 𝔽, such that a is a unit. 𝔽 is called a field.

Definition 4.1.4: Subfield

If 𝑆 is a subring of field 𝔽, and also closed under multiplicative inverses, then it is also a subfield.

We have previously learned that {[
𝑎 𝑏
−𝑏 𝑎

]
: 𝑎, 𝑏 ∈ ℚ

}
is a subring of Mat2(ℝ). But I also claim it is a field itself.

Proof of Claim: Suppose Mat2(0) ∉ 𝑀 =

[
𝑎 𝑏
−𝑏 𝑎

]
, which means a and b not both 0.

det𝑀 = 𝑎2 + 𝑏2
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Let 𝑀−1 = 1
𝑎2+𝑏2

[
𝑎 𝑏
−𝑏 𝑎

]
. Thus we have shown that the subring also is closed under multiplicative inverses. This

is a field. ■

Lemma 4.1.1

For n composite, ℤ𝑛 is not a field if it has zero-divisors.

From now on ℛ ,𝒮 is a ring and 𝔽 is a field.
Definition 4.1.5: Integral Domain

Suppose n is a commutative ring with 1 ∈ ℛ. We say ℛ is an integral domain if 𝑎 ≠ 0 and 𝑎 ∈ ℛ and 𝑎 is
not a zero-divisor.

We can think of these integral domain rings as being almost a field but the only thing discerning them
from being a field is the fact the only zero-divisor is 0ℛ ∈ ℛ. Remember that if there is 0 ∈ ℛ then it is no way
it can be a field, since all fields have 0 ∉ 𝔽, since all elements must have an inverse a.k.a a unit.

Corollary 4.1.1

𝔽 is an integral domain.

Proof: Suppose 𝑎, 𝑏 ∈ 𝔽 with 𝑎𝑏 = 0. Suppose 𝑎 ≠ 0, then 𝑎 is a unit with inverse 𝑎−1. then

𝑎−1(𝑎𝑏) = 𝑎−1 · 0 = 0

= 0

(𝑎−1𝑎)𝑏 = 1𝑏 = 0

= 𝑏 = 0

■

Let’s look into something called extensions.

Definition 4.1.6: Field Adjoins

We call something an adjoin given that suppose we have 𝔽 = ℚ. Note this field is a subfield of ℝ. Then
an extension of ℚ is taking an element of ℝ \ℚ, and adding it to ℚ. An example of this is,

ℚ[
√
7] := {𝑎 + 𝑏

√
7 : 𝑎, 𝑏 ∈ ℚ}

In fact an exercise to do is to show that ℚ[
√
7] is a subfield. Based on everything we have observed, we

can say that ℤ𝑝 is a field and ℤ𝑛 is not even an integral domain.

Axiom 4.1.1 Pigeonhole Principle

If you have 𝑛 + 1 objects in 𝑛 slots, one slot will have more than 1 element.

Theorem 4.1.1

Finite integral domain is a field.

Proof: Let 𝐹 be a finite integral domain. We need to show that if 0 ≠ 𝑢 ∈ 𝐹, then u has a multiplicative inverse.
Consider the set {𝑢, 𝑢2 , 𝑢3 , . . .}. Suppose F has n elements, then there must be repetition. So 𝑢𝑘 = 𝑢𝑚 for 𝑚 > 𝑘.

𝑢𝑚 − 𝑢𝑘 = 0

𝑢𝑘(𝑢𝑚−𝑘 − 1) = 0



Since F is an integral domain, then 𝑢𝑘 = 0 or 𝑢𝑚−𝑘 − 1 = 0. Since 𝑢 ≠ 0, the 𝑢𝑘 ≠ 0. Then

𝑢𝑚−𝑘 − 1 = 0

𝑢𝑚−𝑘 = 1

𝑢(𝑢𝑚−𝑘−1) = 1

𝑢−1 = 𝑢𝑚−𝑘−1.

Thus F is a field. ■

4.2 Homomorphisms and Isomorphisms

Definition 4.2.1: Homomorphism

Let ℛ and 𝒮 be rings. Suppose a function 𝑓 : ℛ ↦→ 𝑠𝑖, with given that 𝑎, 𝑏 ∈ ℛ, 𝑓 (𝑎 + 𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏)
and 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏).

Definition 4.2.2: Isomorphism

Suppose 𝑓 is a bijective homomorphism, then 𝑓 is an isomorphism.

If 𝑓 is an isomorphism, then ℛ and 𝒮 are isomorphic to each other. Suppose ℛ = ℤ and 𝒮 = 2ℤ and let
𝑓 : ℛ ↦→ 𝒮 defined by 𝑓 (𝑚) = 2𝑚. Is an isomorphism?

Disproof:
𝑓 (𝑚 + 𝑛) = 2(𝑚 + 𝑛) = 2𝑛 + 2𝑚

𝑓 (𝑚𝑛) = 2𝑚𝑛 ≠ 𝑓 (𝑚) 𝑓 (𝑛)
Not isomorphic. ■

Proposition 4.2.1

A bijection exists if and only if it has an inverse.

Proof: Let 𝑔 : 𝒮 ↦→ ℛ, thus 𝑓 ◦ 𝑔 is the identity of 𝒮. And 𝑔◦ 𝑓 is the identity of ℛ. Define 𝑔(𝑎+𝑏𝑖) =
[
𝑎 𝑏
−𝑏 𝑎

]
.

Let 𝑓 (
[
𝑎 𝑏
−𝑏 𝑎

]
) = 𝑎 + 𝑏𝑖. This is closed under addition and multiplication. It also has an inverse due to the

determinate law for inverses. ■

Axiom 4.2.1 Isomorphism Properties

We can check the properties of a homomorphism to check if it is isomorphic.

1. # of elements in ℛ = 𝒮

2. # of units in ℛ = 𝒮 (Check how many coprimes in both sets)

3. # of 0-divisors for both are the same.

For example, we can state that ℤ � ℚ. The reason is that every element in ℚ is a unit as the only unit in
ℤ is 1. Similarly, ℤ4 � ℤ6, due to the number of elements.
Perhaps in previous courses, such as Calculus III, you have looked at ℝ3, which means a 3-tuple ordered pair
that represents (x,y,z) in a space. However, this is a generalized fact. What if I wanted to have two points from
different sets, but still create an ordered pair or tuple?



Axiom 4.2.2 Cartesian Product

If ℛand 𝒮 are rings, then ℛ × 𝒮 := {(𝑟, 𝑠) : 𝑟 ∈ ℛ , 𝑠 ∈ 𝒮} is also a ring under addition and multiplication.

(𝑟1 , 𝑠1) + (𝑟2 , 𝑠2) = (𝑟1 + 𝑟2 , 𝑠1 + 𝑠2)
(𝑟1 , 𝑠1)(𝑟2 , 𝑠2) = (𝑟1𝑟2 , 𝑠1𝑠2).

It will be a fun exercise to prove the following lemma or at least a couple of examples.

Lemma 4.2.1

If the 𝑔𝑐𝑑(𝑚, 𝑛) = 1, then ℤ𝑚 ×ℤ𝑛 � ℤ𝑚𝑛 .

Note that in ℤ ×ℤ, the zero-divisors are (0, 1), (1, 0).
Let ℛ = 𝒮 = ℤ in ℤ ×ℤ. Let 𝜋 : ℤ ×ℤ ↦→ ℤ. Then we have that 𝜋[(1, 0)] = 1, which is a unit. So a homomor-
phism need not preserve zero-divisors.

4.3 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 5

Polynomials

5.1 Polynomials

Definition 5.1.1: Polynomial

A polynomial with coefficients in a ℛ is denoted by ℛ[𝑥], which is an extension field of 𝑥 expanding the
set to include

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + . . . + 𝑎𝑛𝑥𝑛 .
We can think of 𝑎𝑛 as coefficients.

Proposition 5.1.1

We do addition and multiplication component-wise, which means given an 𝑖 large enough, 𝑎 will eventually
be 0. To understand what I mean, let

𝑓 (𝑥) = 𝑎0 + . . . + 𝑎𝑛𝑥𝑛

𝑔(𝑥) = 𝑏0 + . . . + 𝑏𝑚𝑥𝑚 ,

given that 𝑚 ⩾ 𝑛. Therefore

𝑓 (𝑥) + 𝑔(𝑥)

This informal definition raises several questions: What is 𝑥? Is it an element of 𝑅? If not, what does
it mean to multiply 𝑥 by a ring element? To answer these questions, note that an expression of the form
𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + . . . + 𝑎𝑛𝑥
𝑛 makes sense, provided that the 𝑎1 and 𝑥 are all elements of some larger ring.

An analogy might be helpful here. The number 𝜋 is not in the ring of integers (ℤ), but expressions such as
3− 4𝜋+ 12𝜋2 +𝜋3 and 8−𝜋2 + 6𝜋5 make sense in the real numbers (ℝ). Furthermore, it is not difficult to verify
that the set of all numbers of the form

∑𝑛
𝑖=0 𝑎𝑖𝜋

𝑖 , with 𝑛 ⩾ 0 and 𝑎1 ∈ ℤ, is a subring of ℝ that contains both
ℤ and 𝜋. For the present, we shall think of polynomials with coefficients in a ring 𝑅 in much the same way, as
elements of a larger ring that contains both 𝑅 and a special element 𝑥 that is not in 𝑅. This is analogous to the
situation in the preceding paragraph with 𝑅 in place of ℤ and 𝑥 in place of 𝜋, except that here we don’t know
anything about the element 𝑥 or even if such a larger ring exists.
Feel free to check if 𝑅[𝑥] is a ring, but we will be concentrating on ℤ[𝑥],ℚ[𝑥]ℝ[𝑥],ℂ[𝑥],ℤ𝑝[𝑥], and have their
elements denoted by 𝑓 (𝑥) or 𝑃(𝑥).

Definition 5.1.2: Degree of a Polynomial

If 𝑓 (𝑥) ∈ ℛ[𝑥], the degree of 𝑓 (𝑥), denoted by deg 𝑓 (𝑥), is the largest n for which the coefficient of 𝑥𝑛 is
not 0. 𝑎𝑛 is also called the leading term.
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Definition 5.1.3: Additive Identity of ℛ[𝑥]

𝑎𝑛 is 0.

If the deg 𝑓 (𝑥) = 0, then the degree is undefined, which means the leading term is undefined.

Proposition 5.1.2 Degree Arithmetic

Suppose deg 𝑓 (𝑥) = 𝑚, deg 𝑔(𝑥) = 𝑛,

deg 𝑓 (𝑥) + 𝑔(𝑥) ⩽ max{deg 𝑓 (𝑥), deg 𝑔(𝑥)}

if 𝑚 ≠ 𝑛

deg 𝑓 (𝑥) + deg 𝑔(𝑥) = max{𝑚, 𝑛}

if 𝑚 = 𝑛

deg 𝑓 (𝑥) + deg 𝑔(𝑥) ⩽ max{𝑚, 𝑛}

If 𝑓 (𝑥)𝑔(𝑥) = 𝑎0𝑏0 + . . . + 𝑎𝑛𝑏𝑚𝑥𝑛+𝑚 , so deg 𝑓 (𝑥)𝑔(𝑥) ⩽ deg 𝑓 (𝑥) + deg 𝑔(𝑥).
However, if ℛ is an integral domain, then

deg 𝑓 (𝑥)𝑔(𝑥) = deg 𝑓 (𝑥) + deg 𝑔(𝑥)

Let 𝑓 (𝑥), 𝑔(𝑥) ∈ ℤ4[𝑥], 𝑓 (𝑥) = 2𝑥, 𝑔(𝑥) = 2𝑥2, then 𝑓 (𝑥)𝑔(𝑥) = 4𝑥3 = 0.

From now on ℛ is an Integral Domain.
Given that ℛ is an integral domain, one may naturally ask, what are the units of ℛ?

Lemma 5.1.1

Suppose 𝑢(𝑥) is a unit with a multiplicative inverse 𝑣(𝑥). Then

𝑢(𝑥)𝑣(𝑥) = 1 = 1 + 0𝑥 + 0𝑥2 + . . .

5.2 Division

Theorem 5.2.1 Division Algorithm in Polynomial Fields

Suppose 𝔽 is a field and 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽[𝑥], 𝑏(𝑥) ≠ 0. Then there exists a unique 𝑟(𝑥) ∈ 𝔽[𝑥] with

𝑎(𝑥) = 𝑞(𝑥)𝑏(𝑥) + 𝑟(𝑥)

with deg(𝑟(𝑥)) > deg(𝑏(𝑥)) or 𝑟(𝑥) = 0.

Proof: Case 1: If 𝑎(𝑥) = 0 or deg(𝑎(𝑥)) < deg(𝑏(𝑥)), then 𝑞(𝑥) = 0 and 𝑟(𝑥) = 𝑎(𝑥) because 𝑎(𝑥) = 𝑏(𝑥)0+ 𝑎(𝑥).
Case 2: If 𝑎(𝑥) ≠ 0 and deg(𝑎(𝑥)) > deg(𝑏(𝑥)), and 𝑎(𝑥)/𝑏(𝑥) = ℎ(𝑥), then deg(ℎ(𝑥)) < deg(𝑎(𝑥)). If deg(𝑎(𝑥)) = 0,
then 𝑎(𝑥) = 𝑎, a constant in 𝔽. deg(𝑏(𝑥)) < deg(𝑎(𝑥)) implies 𝑏(𝑥) equals a constant.

𝑎(𝑥) = 𝑏(𝑥)(𝑏(𝑥)−1𝑎(𝑥)) + 0

𝑞(𝑥) = 𝑏(𝑥)−1𝑎(𝑥)
𝑟(𝑥0 = 0.

Assume the division is using strong induction. For all polynomials of deg(𝑎(𝑥)) < deg(𝑏(𝑥)) assume 𝑏(𝑥), 𝑎(𝑥).
Then 𝑎(𝑥) = 𝑎𝑛𝑥

𝑛−𝑚𝑏(𝑥) + ℎ(𝑥) such that deg(ℎ(𝑥)) < deg(𝑎(𝑥)). ℎ(𝑥) = 𝑞1(𝑥)𝑏(𝑥) + 𝑟(𝑥) such that deg(𝑟(𝑥)) <



deg(𝑏(𝑥)) or 𝑟(𝑥) = 0.
Proof of Uniqueness: Suppose

𝑎(𝑥) = 𝑞1(𝑥)𝑏(𝑥) + 𝑟1(𝑥)
= 𝑞2(𝑥)𝑏(𝑥) + 𝑟2(𝑥)

where deg(𝑟1(𝑥)), deg(𝑟2(𝑥)) < deg(𝑏(𝑥)) or 𝑟1(𝑥), 𝑟2(𝑥) = 0. So

[𝑞1(𝑥) − 𝑞2(𝑥)]𝑏(𝑥) + [𝑟1(𝑥) − 𝑟2(𝑥)] = 0

[𝑞1(𝑥) − 𝑞2(𝑥)]𝑏(𝑥) = [𝑟2(𝑥) − 𝑟1(𝑥)].

So either 𝑟2(𝑥) = 𝑟1(𝑥) = 0 or deg(𝑟2(𝑥) − 𝑟1(𝑥)) ⩽ deg(𝑟1(𝑥)) ⩽ deg(𝑟2(𝑥)).
In any case deg(𝑟2(𝑥) − 𝑟1(𝑥)) < deg(𝑏(𝑥)) or 𝑟2(𝑥) = 𝑟1(𝑥) = 0. Let’s state 𝑎(𝑥) ≠ 0. Then 𝑎(𝑥)𝑏(𝑥) = 𝑎𝑛𝑏𝑚𝑥

𝑛+𝑚 +
. . . 𝑎0𝑏0, and 𝑎𝑛𝑏𝑚 ≠ 0.
Suppose (𝑞1(𝑥) − 𝑞2(𝑥))𝑏(𝑥) ≠ 0. Then deg((𝑞1(𝑥) − 𝑞2(𝑥))𝑏(𝑥)) = 𝑑𝑒𝑔(𝑞1(𝑥)𝑞2(𝑥)) + 𝑑𝑒𝑔(𝑏(𝑥)) ⩾ 𝑑𝑒𝑔(𝑏(𝑥)).
Conclusion: (𝑞1(𝑥) − 𝑞2(𝑥))𝑏(𝑥) = 0 thus 𝑞1(𝑥) = 𝑞2(𝑥). And since 𝑟2(𝑥) − 𝑟1(𝑥) = 0, then 𝑟2(𝑥) = 𝑟1(𝑥). ■

The Division Algorithm for polynomial fields is a fundamental concept that allows you to divide one
polynomial by another, similar to the division algorithm with integers. This algorithm helps you express one
polynomial as a quotient of another polynomial plus a remainder.

Definition 5.2.1: Logical Divide of Polynomial Fields

Let 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽 and 𝑏(𝑥) ≠ 0. We say 𝑏(𝑥)|𝑎(𝑥) if there exists a 𝑞(𝑥) ∈ 𝔽 such that 𝑎(𝑥) = 𝑞(𝑥)𝑏(𝑥).

Definition 5.2.2: GCD of Polynomial Fields

Suppose 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽[𝑥] not both 0. 𝑑(𝑥) = 𝑔𝑐𝑑(𝑎(𝑥), 𝑏(𝑥)) means 𝑑(𝑥)𝑎(𝑥), 𝑑(𝑥)𝑏(𝑥), and if there exists
a 𝑐(𝑥) ∈ 𝔽[𝑥] with 𝑐(𝑥)𝑎(𝑥), 𝑐(𝑥)𝑏(𝑥), then 𝑐(𝑥)𝑑(𝑥) so 𝑑𝑒𝑔(𝑐(𝑥)) ⩽ 𝑑𝑒𝑔(𝑑(𝑥)).

Suppose we are in ℚ[𝑥]. Let
𝑎(𝑥) = (𝑥 − 1)2

and
𝑏(𝑥) = (𝑥 − 1)(𝑥 − 2).

Then the 𝑔𝑐𝑑(𝑎(𝑥), 𝑏(𝑥)) = 𝑥 − 1. But wait, doesn’t 2𝑥 − 2|𝑎(𝑥) and 𝑏(𝑥).
We have a problem on our hands. . . We have to figure out how to circumvent this solution and before we can do
that, let’s go ahead and introduce a new term.

Definition 5.2.3: Monic

If 𝑑(𝑥) ∈ 𝔽[𝑥] has a leading coefficient of 1, then 𝑑(𝑥) is monic.

In algebra, monic polynomials are commonly used in the context of irreducible polynomials (polynomials
that cannot be factored further). Monic irreducible polynomials have a leading coefficient of 1, and this condition
simplifies discussions of unique factorization.

Definition 5.2.4: Polynomial Associates

If 𝑐(𝑥), 𝑑(𝑥) ∈ 𝔽[𝑥] and 𝑐(𝑥) = 𝛽𝑑(𝑥) and 𝛽 ∈ 𝔽 and 𝛽 ≠ 0, we say 𝑐(𝑥) and 𝑑(𝑥) are associates.

We can think of associates as polynomial constant multiples.

Theorem 5.2.2 GCD Theorem

Suppose 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽[𝑥] not both 0. Let

𝑆 := {𝑢(𝑥)𝑎(𝑥) + 𝑣(𝑥)𝑏(𝑥) ≠ 0 : 𝑢(𝑥), 𝑣(𝑥) ∈ 𝔽[𝑥]}



, then there exists 𝑢(𝑥), 𝑣(𝑥) ∈ 𝔽[𝑥], such that 𝑑(𝑥) = 𝑢(𝑥)𝑎(𝑥) + 𝑣(𝑥)𝑏(𝑥) and 𝑑(𝑥) = 𝑔𝑐𝑑(𝑎(𝑥), 𝑏(𝑥)). S
has a unique monic polynomial of the smallest degree which is the 𝑔𝑐𝑑(𝑎(𝑥), 𝑏(𝑥)).

This theorem also answers the question to our gcd question, which shows that we want to have a monic
polynomial of smallest degree as our 𝑔𝑐𝑑(𝑎(𝑥), 𝑏(𝑥)). The set of degrees is a subset of ℤ+, and let 𝑑(𝑥) be a monic
polynomial of minimal degree in S, so the theorem exists. The GCD (Greatest Common Divisor) Theorem for
Polynomial Fields is a fundamental result in abstract algebra that addresses the existence and uniqueness of the
greatest common divisor of two polynomials in a polynomial ring over a field. The theorem establishes a clear
and precise method for finding the GCD of polynomials and its properties.

Proof: Let 𝑑(𝑥) be a monic polynomial such that 𝑑(𝑥) ∈ 𝑆. If 𝑐(𝑥) is any polynomial in S, then deg(𝑑(𝑥)) ⩽
deg(𝑐(𝑥)). We need to show that 𝑑(𝑥)|𝑎(𝑥).

Let’s use the division algorithm. Suppose 𝑑(𝑥) ≠ 0. We write 𝑎(𝑥) = 𝑞(𝑥)𝑑(𝑥) + 𝑟(𝑥), so 𝑟(𝑥) = 0. We show
this by saying 𝑟(𝑥) is a non-zero and 𝑟(𝑥) ∈ 𝑆 and 𝑟(𝑥) = 𝑎(𝑥) − 𝑞(𝑥)𝑑(𝑥) where 𝑑(𝑥) = 𝑎(𝑥)𝑢(𝑥) + 𝑏(𝑥)𝑣(𝑥) such
that

𝑟(𝑥) = 𝑎(𝑥) − 𝑞(𝑥)(𝑎(𝑥)𝑢(𝑥) + 𝑏(𝑥)𝑣(𝑥))
= 1 − 𝑞(𝑥)𝑢(𝑥)𝑎(𝑥) − 𝑞(𝑥)𝑣(𝑥)𝑏(𝑥)𝑆.

Contradicting 𝑑(𝑥) as being a polynomial with the least degree. We conclude 𝑟(𝑥) = 0, so 𝑑(𝑥)|𝑎(𝑥). Similarly
𝑑(𝑥)|𝑏(𝑥). Suppose 𝑐(𝑥)|𝑎(𝑥), 𝑐(𝑥)𝑏(𝑥), then 𝑐(𝑥)|𝑢(𝑥)𝑎(𝑥) + 𝑣(𝑥)𝑏(𝑥) = 𝑑(𝑥). ■

Definition 5.2.5: Relatively Prime

𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽, not both 0. a(x) and b(x) are relatively prime if 𝑔𝑐𝑑(𝑎(𝑥), 𝑏(𝑥)) = 1.

Corollary 5.2.1 Consequence of GCD Theorem

Suppose 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽 are relatively prime and 𝑐(𝑥) ∈ 𝔽. If 𝑎(𝑥)|𝑏(𝑥)𝑐(𝑥), then 𝑎(𝑥)|𝑐(𝑥).

Proof: By the gcd theorem, we have 1 = 𝑢(𝑥)𝑎(𝑥) + 𝑣(𝑥)𝑏(𝑥), so 𝑐(𝑥) = 𝑐(𝑥)𝑢(𝑥)𝑎(𝑥) + 𝑐(𝑥)𝑣(𝑥)𝑏(𝑥). Since
𝑎(𝑥)|𝑐(𝑥)𝑢(𝑥)𝑎(𝑥) and 𝑎(𝑥)|𝑐(𝑥)𝑣(𝑥)𝑏(𝑥), then 𝑎(𝑥)|𝑐(𝑥). ■

If we let ℛ = 𝔽[𝑥], we notice that it has very similar properties to ℤ, such that it has the division and gcd
algorithm. In fact, it also will have relatively prime and an equivalence to primes but for polynomials. Let’s look
at this equivalence.

Definition 5.2.6: Irreducible

A polynomial 𝑝(𝑥) ∈ 𝔽[𝑥] is irreducible if 𝑝(𝑥) = 𝑎(𝑥)𝑏(𝑥) for 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽[𝑥] then 𝑎(𝑥) is an associate of
𝑝(𝑥) or 𝑎(𝑥) is a unit.

5.3 Irreducibility

Proposition 5.3.1 Polynomial Euclid’s Lemma

Suppose 𝑝(𝑥) ∈ 𝔽[𝑥] which is irreducible and 𝑏(𝑥) ∈ 𝔽[𝑥] such that 𝑝(𝑥) ∤ 𝑏(𝑥), then 𝑔𝑐𝑑(𝑝(𝑥), 𝑏(𝑥)) = 1.

Proof: Let 𝑑(𝑥) = 𝑔𝑐𝑑(𝑝(𝑥), 𝑏(𝑥)). 𝑑(𝑥)|𝑝(𝑥), 𝑑(𝑥)|𝑏(𝑥), and since 𝑝(𝑥) is irreducible, then 𝑑(𝑥) is monic, 𝑑(𝑥) =
1, 𝑑 = 𝑐𝑝(𝑥) given that 𝑐 ∈ 𝔽.
If 𝑑(𝑥) = 𝑐𝑝(𝑥) and 𝑑(𝑥)|𝑏(𝑥), then 𝑝(𝑥)|𝑏(𝑥), a contradiction arose. Therefore 𝑝(𝑥)|𝑏(𝑥) or 𝑝(𝑥)|𝑐(𝑥). ■

Corollary 5.3.1

If 𝑝(𝑥)|𝑎1(𝑥) . . . 𝑎𝑛(𝑥), given 𝑎𝑖(𝑥) ∈ 𝔽[𝑥], 𝑝(𝑥) is irreducible, then 𝑝(𝑥)|𝑎𝑖(𝑥) for some i. Then show the



answer by induction on n.

Theorem 5.3.1

Suppose you have any polynomial 𝑎(𝑥) ∈ 𝔽[𝑥], then 𝑎(𝑥) has a factorization into irreducible polynomials.
This factorization is unique up to order and associates.

Proof: Use strong induction on degree of 𝑎(𝑥).
Uniqueness. If

𝑎(𝑥) = 𝑝1(𝑥) . . . 𝑝𝑟(𝑥)
= 𝑞1(𝑥) . . . 𝑞𝑠(𝑥),

where 𝑝𝑖(𝑥), 𝑞𝑖(𝑥) are irreducible. Then let 𝑟 = 𝑠 and after rearranging 𝑞𝑖(𝑥), 𝑝𝑖(𝑥) is an associate of 𝑞𝑖(𝑥) each.
Proof of Uniqueness. 𝑝1(𝑥)|𝑞1(𝑥) . . . 𝑞𝑠(𝑥), 𝑝𝑖(𝑥)|𝑞𝑖(𝑥) for some i. Without loss of generality, since 𝑞1(𝑥) is
irreducible, then 𝑝1(𝑥), 𝑞1(𝑥) are associates. Proceed to show this by induction on min{𝑟, 𝑠}. ■

Lemma 5.3.1 Irreducible degrees

Degree 1 polynomials are irreducible.
If a degree 2 polynomial is reducible, then it is made of linear polynomials.

Lemma 5.3.2 Freshman’s Dream

In ℤ2, (𝑥 + 1)2 = 𝑥2 + 1.

Proposition 5.3.2

If 𝑓 (𝑥) is irreducible 𝔽[𝑥], so are all associates 𝑓 (𝑥)

Take note of that for the equation 𝑥2 + 𝑎𝑥 + 𝑏, there are 3 choices for each 𝑎, 𝑏 which means 9 total choices
for this polynomial. The number of monic polynomials of deg 𝑛 in ℤ𝑝[𝑥] is 𝑝𝑛 . Total number of polynomials of
deg 𝑛 is (𝑝 − 1)𝑝𝑛 .

Example 5.3.1

Prove that 𝑥2 + 2 is irreducible in ℚ[𝑥].

Proof:

𝑥2 − 2 = (𝑥 −
√
2)(𝑥 +

√
2) ∈ ℝ

This factorization is unique. Since factorization ℚ[𝑥] is also unique if 𝑥2 − 2 had a factorization by linear. It
would have include (𝑥 −

√
2)(𝑥 +

√
2), but

√
2 ∉ ℚ. ■

Let 𝔽 be a field. Take 𝑓 (𝑥) ∈ 𝔽[𝑥], there is a corresponding polynomial function, 𝔽 ↦→ 𝔽 denoted by 𝑓 (𝑥).

Theorem 5.3.2 Factor Theorem

Let 𝑓 (𝑥) ∈ 𝔽[𝑥] and 𝑎 ∈ 𝔽 if 𝑓 (𝑎) = 0, then (𝑥− 𝑎) is a factor of the polynomial 𝑓 (𝑥). i.e. 𝑓 (𝑥) = 𝑔(𝑥)(𝑥− 𝑎).

Example 5.3.2

(a). Show that 𝑥2 + 2 is irreducible in ℤ5[𝑥].



Proof of Example 5.2.2: We will do a proof by contradiction. Suppose 𝑥2 + 2 is not irreducible. Then 𝑥2 + 2
is made up of linear polynomials such that (𝑥+ 𝑎)(𝑥+ 𝑏) = 𝑥2+2. But note that (𝑥+ 𝑎)(𝑥+ 𝑏) = 𝑥2+ 𝑥𝑎+ 𝑥𝑏+ 𝑎𝑏,
and we don’t have a degree 1 in our polynomial. Therefore, 𝑎 = −𝑏, thus (𝑥 + 𝑎)(𝑥 − 𝑎) will result in 𝑥2 + 𝑎2, but
note that 𝑎2 = 2 or 𝑎2 = 3, and 𝑎 = ±

√
2 or 𝑎 = ±

√
3, but

√
2,
√
3 ∉ ℤ5. Therefore, this polynomial, 𝑥2 + 2 is

irreducible. ■ ■

(b). Factor 𝑥4 − 4 as a product of irreducibles in ℤ5[𝑥].

(𝑥2 + 2)(𝑥2 − 2)

However, (𝑥2 − 2) is not further reducible, since we will deal with an irrational
√
2, which is not in ℤ5.

Theorem 5.3.3 Remainder Theorem

Let 𝑓 (𝑥) ∈ 𝔽[𝑥], 𝑎 ∈ 𝔽[𝑥]. Then 𝑓 (𝑥) = 𝑔(𝑥)(𝑥− 𝑎)+ 𝑟(𝑥), given there exists 𝑔(𝑥) ∈ 𝔽[𝑥]. 𝑟(𝑥) is a constant.

Proof of Remainder Theorem: By division algorithm, 𝑓 (𝑥) = 𝑔(𝑥)(𝑥−𝑎)+𝑟(𝑥) where 𝑟(𝑥) = 0 or deg(𝑟(𝑥)) <
deg(𝑥 − 𝑎) or 𝑟(𝑥) = 0.
If deg(𝑟(𝑥)) < deg(𝑥 − 1), then deg(𝑟(𝑥)) < 1 implying that deg(𝑟(𝑥)) = 0. So 𝑟(𝑥) is some constant or 0. ■

Proof of Factor Theorem: We know by remainder theorem 𝑓 (𝑥) = 𝑔(𝑥)(𝑥− 𝑎)+ 𝑟(𝑥) where 𝑟(𝑥) is a constant,
indexed function and by the previous example we now have that

𝑓 (𝑎) = 𝑔(𝑥)(𝑎 − 𝑎) + 𝑟(𝑥)
= 𝑟(𝑥).

So 𝑓 (𝑥) = 𝑔(𝑥)(𝑥 − 𝑎). ■

Definition 5.3.1: Roots

𝑎 is a root of 𝑓 (𝑥) if 𝑓 (𝑎) = 0.

Corollary 5.3.2 of Factor Theorem

Suppose 𝑓 (𝑥) ∈ 𝔽[𝑥] has deg 𝑓 (𝑥) = 𝑛, then 𝑓 (𝑥) has at most n different roots.

Proof: By induction on deg 𝑓 (𝑥); Suppose deg 𝑓 (𝑥) = 0, f is a non-zero constant with no roots.
deg 𝑓 (𝑥) = 1, then 𝑓 (𝑥) = 𝑎1𝑥 + 𝑎2, 𝑎 ≠ 0. Only one root at 𝑥 =

−𝑎2
𝑎1

. Assume true for polynomials of

deg 𝑓 (𝑥) = 𝑛 − 1. If 𝑏 ≠ 𝑎, then b is a root of f(x). 0 = 𝑓 (𝑏) = (𝑏 − 𝑎)𝑔(𝑏), 𝑏 − 𝑎 ≠ 0 =⇒ 𝑔(𝑏) = 0. By the
induction hypothesis, there exists at most 𝑛 − 1 such b. So the number of roots of 𝑓 (𝑥) is at most 1+ (𝑛 − 1) = 𝑛.
■

If 𝑓 (𝑥) ∈ ℚ[𝑥], then the rational root test tells us if 𝑓 (𝑥) has a linear factor.

Definition 5.3.2: Rational Root Test

If 𝑟 |𝑎0 and 𝑠 |𝑎𝑛 and 𝑔𝑐𝑑(𝑟, 𝑠) = 1 then 𝑟
𝑠 is a possible root given that 𝑓 ( 𝑟𝑠 ) = 0. Since 𝑎0 and 𝑎𝑛 have

finitely many factors, then there are only finitely many factors to check.

For example, 2𝑥3− 𝑥2+1 is irreducible due to the Rational Root Test, as we find the 𝑟/𝑠 = 1/2, 1 and their
additive inverses. After checking all possibilities plugged into 𝑓 (𝑥), we see none of them are 0.
Suppose 𝑓 (𝑥) ∈ ℤ[𝑥] and 𝑔(𝑥), ℎ(𝑥) ∈ ℚ[𝑥] then ∃𝛼, 𝛽 ∈ ℚ such that

𝑓 (𝑥) = (𝛼𝑔(𝑥))(𝛽ℎ(𝑥)) ∈ ℤ[𝑥].

Suppose also that if 𝑓 (𝑥) ∈ ℚ[𝑥], 𝑓 (𝑥) is only irreducible if and only if there is a 𝑐 ∈ ℚ such that 𝑐 𝑓 (𝑥) can let
us assume that 𝑐 𝑓 (𝑥) ∈ ℤ[𝑥]. The rational root test tells us if they are linear which suffices to show there is
irreducibility for degrees 2 and 3 but not higher. This builds the foundation for the following theorem.



Theorem 5.3.4 Gauss’s Lemma of Irreducibility

Suppose 𝑓 (𝑥) ∈ ℤ[𝑥], if 𝑓 (𝑥) is irreducible in ℤ[𝑥], then 𝑓 (𝑥) is irreducible in ℚ[𝑥].

One may ask, is the converse possible given these assumptions? I claim not always.
It is possible when given that 𝑔(𝑥)ℎ(𝑥) ∈ ℚ[𝑥], and the deg 𝑔(𝑥), ℎ(𝑥) < deg 𝑓 (𝑥), therefore 𝑓 (𝑥) is irreducible in
ℚ[𝑥]. But what if we considered that 𝑓 (𝑥) cannot even be written as a product of integer coefficients? This is a
more simplified version of Gauss’s lemma, but the actual lemma looks into something called primitivity, which is
not looked into in this course.

Definition 5.3.3: Primitivity

𝑝(𝑥) has integer coefficients and is called primitive if and only if the gcd of all the coefficients is 1.

If this is also true, then and only then will it be a bi-conditional statement.
This was a whole block of assumptions to unfold before displaying the if-then statement of (our) Gauss’s lemma
of irreducibility. But let’s look at an example of how to apply this. Let 𝑓 (𝑥) ∈ ℚ[𝑥], 𝑓 (𝑥) = 6𝑥2 − 5𝑥 + 1,
therefore it can be reduced into 𝑓 (𝑥) = (𝑥 − 1

2 )(6𝑥 − 2), therefore 𝑓 ( 12 ) = 0. Thus we have shown a root in
ℚ[𝑥] which demonstrates that it is reducible. But we can also write this in the form of integer factors, as
𝑓 (𝑥) = (2𝑥 − 1)(3𝑥 − 1) ∈ ℤ[𝑥] and you can verify this.

Lemma 5.3.3 Introductory Lemma

Suppose 𝑓 (𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ ℤ[𝑥] where 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥). Let 𝑝 be prime such that p divides every coefficient
of 𝑓 (𝑥), then either 𝑝 divides every coefficient of 𝑔(𝑥) or ℎ(𝑥).

Sketch of Proof: Suppose 𝑓 (𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ ℤ[𝑥] where 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥). Then 𝑎0 = 𝑏0𝑐0, therefore 𝑝 |𝑎0
which implies 𝑝 |𝑏0𝑐0, and due to Euclid’s lemma, then 𝑝 |𝑏0 or 𝑝 |𝑐0. Suppose 𝑔𝑐𝑑(𝑝, 𝑐0) = 1, then and 𝑝 |𝑎1 =

𝑏0𝑐1 + 𝑏1𝑐0, then we know 𝑝 ∤ 𝑐0 implying 𝑝 |𝑏1. Let there exist 𝛼, 𝛽 such that 𝛼𝑔(𝑥), 𝛽ℎ(𝑥) ∈ ℤ[𝑥], then
𝛼𝛽 𝑓 (𝑥) = (𝛼𝑔(𝑥))(𝛽ℎ(𝑥)). By canceling primes, dividing 𝛼𝛽, and using the introductory Lemma we get 𝑓 (𝑥)
being a product of polynomials of integer coefficients. ■

Theorem 5.3.5 Eisenstein’s Theorem of Irreducibility

Suppose 𝑓 (𝑥) ∈ ℤ[𝑥]. Let deg 𝑓 (𝑥) = 𝑛. Suppose 𝑝 ∤ 𝑎𝑛 𝑝 |𝑎𝑖 for 𝑖 < 𝑛, 𝑝2 ∤ 𝑎0, then 𝑓 (𝑥) is irreducible in
ℚ[𝑥].

Proof: Suppose 𝑓 (𝑥) is reducible in ℚ[𝑥], then 𝑓 (𝑥) is reducible in ℤ[𝑥] by Gauss’s Lemma. So 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥),
𝑔(𝑥), ℎ(𝑥) ∈ ℤ[𝑥], deg 𝑔(𝑥), ℎ(𝑥) < deg 𝑓 (𝑥) = 𝑛. So 𝑝 |𝑎0 = 𝑏0𝑐0 and so forth following Introductory Lemma. ■

Lemma 5.3.4

Linear Polynomials are not reducible

Sketch of Proof: Following Eisenstein’s proof, we find that if linear polynomials are reducible then this con-
tradicts Eisenstein’s. ■

Let 𝑓 (𝑥) = 2𝑥4 + 15𝑥3 + 30𝑥2 + 60𝑥 − 21. 3 ∤ 2, 3|15, 30, 60, 21, but 9 ∤ 21. So 𝑓 (𝑥) is irreducible by
Eisenstein.

Theorem 5.3.6 Reduction mod P

Let 𝑓 (𝑥) ∈ ℤ[𝑥]. Let 𝑝 ∤ 𝑎𝑛 . Consider 𝑓 (𝑥) = 𝑎𝑛𝑥
𝑛 + . . . + 𝑎0 where 𝑎𝑖 Is congruence class 𝑎𝑖 mod 𝑝. If

𝑓 (𝑥) is irreducible in ℤ𝑝[𝑥] then 𝑓 (𝑥) is irreducible in ℤ[𝑥] and ℚ[𝑥]. The converse is not true.

Let 𝑓 (𝑥) = 𝑥4 + 3𝑥3 + 6𝑥2 + 1 ∈ ℚ[𝑥]. Try 𝑝 = 2, 𝑓 (𝑥) = 𝑥4 + 𝑥3 + 1 has no factors and roots, so it is not
linear and irreducible.



Proof: Suppose 𝑓 (𝑥) is irreducible in ℚ[𝑥], then 𝑓 (𝑥) = 𝑔(𝑥)ℎ(𝑥) ∈ ℤ[𝑥]. deg 𝑔(𝑥), ℎ(𝑥) < 𝑛. Let 𝑓 (𝑥) = 𝑓 (𝑥)
mod 𝑝, since 𝑝 ∤ 𝑎𝑛 , and 𝑎𝑛 ≠ 0, so deg 𝑓 (𝑥) = 𝑛 implying that 𝑘, 𝑚 < 𝑛. 𝑓 (𝑥) is a product of polynomials of
smaller degree which is a contradiction, so 𝑓 (𝑥) must be irreducible in ℚ[𝑥]. ■

Theorem 5.3.7 Fundamental Theorem of Algebra

If 𝑓 (𝑥) ∈ ℂ[𝑥], then 𝑓 (𝑥) is irreducible, if and only if 𝑓 (𝑥) is linear, if and only if every non-constant of
𝑓 (𝑥) ∈ ℂ[𝑥] can be factored as a product of linear factors, if and only if every non-constant 𝑓 (𝑥) ∈ ℂ[𝑥]
has a root.

For example 𝑓 (𝑥) = 𝑥2 + 1 ∈ ℂ[𝑥] has complex roots ±𝑖. 𝑓 (𝑋) = (𝑥 + 𝑖)(𝑥 − 𝑖). Let 𝜃 = 2𝜋
3 ,

4𝜋
3 .

𝑒𝜃𝑖 = cos𝜃 + 𝑖 sin𝜃(
𝑒𝜃𝑖

)3
= cos 3𝜃 + 𝑖 sin 3𝜃

= cos 2𝜋 + 𝑖 sin 2𝜋
= cos 4𝜋 + 𝑖 sin 4𝜋
= 1

Roots of 𝑥𝑛 − 1 are 𝑒𝜃𝑖 , 𝑒2𝜃𝑖 , 𝑒3𝜃𝑖 , . . . , 𝑒(𝑛−1)𝜃𝑖

Proposition 5.3.3

Suppose 𝑓 (𝑥) ∈ ℝ[𝑥], every irreducible 𝑓 (𝑥) has degree 1 and 2.

Example 5.3.3

Suppose 𝑓 (𝑥) ∈ ℝ[𝑥] and has degree 3. By IVT, there exists a 𝑐 ∈ ℝ, 𝑓 (𝑐) = 0, so by the factor theorem,
(𝑥 − 𝑐) is a factor of 𝑓 (𝑥) ∈ ℝ[𝑥].

Proof Part 1.: Consider 𝑓 (𝑥) ∈ ℝ[𝑥] as a polynomial of ℂ[𝑥]. By FTA, 𝑓 (𝑥) has a root in ℂ. If this root is
real, then 𝑓 (𝑥) has a linear factor. So we can assume that 𝜔 = 𝑎 + 𝑏𝑖 is a root of 𝑓 (𝑥).
■

Claim. So is 𝜔 = 𝑎 − 𝑏𝑖: Suppose 𝑓 (𝑥), 𝑎𝑖 ∈ ℝ. We assume 𝑓 (𝜔) = 0. We can suppose 𝜙 is a homomorphism
of ℂ, which leaves ℝ fixed. i.e. if 𝑎 ∈ ℝ, 𝜙(𝑎) = 𝑎, then 𝜔 and 𝑓 (𝜔) = 0, then 𝑓 (𝜙(𝜔)) = 0.
■

Lemma 5.3.5

Now let 𝜙(𝑎 + 𝑏𝑖) = 𝑎 − 𝑏𝑖, therefore 𝜙 : ℂ ↦→ ℂ, therefore 𝜙 is a isomorphism.

Proof. ctd: Since complex conjugation is an isomorphism ℂ ↦→ ℂ. Therefore 𝑓 (𝜔) = 0 also. Now suppose
𝑓 (𝜔) = 0, 𝜔 ̸∈ ℝ and 𝑓 (𝜔) = 0, (𝑥−𝜔), (𝑥−𝜔) are factors of ℂ[𝑥] of 𝑓 (𝑥). But (𝑥−𝜔), (𝑥−𝜔) = 𝑥2−(𝜔+𝜔)𝑥+𝜔𝜔,
which (𝜔 + 𝜔) ∈ ℝ, 𝜔𝜔 ∈ ℝ. Therefore all factors are in ℝ[𝑥] hence, degree 1 or 2. ■

5.4 Congruences

Theorem 5.4.1

Let 𝑚(𝑥) ∈ 𝔽[𝑥]. If 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽[𝑥]. Let’s define 𝑎(𝑥) ≡ 𝑏(𝑥) mod 𝑚(𝑥)

Definition 5.4.1: Congruences

Let 𝑚(𝑥) ∈ 𝔽[𝑥]. If 𝑎(𝑥), 𝑏(𝑥) ∈ 𝔽[𝑥]. Let’s define 𝑎(𝑥) ≡ 𝑏(𝑥) mod 𝑚(𝑥) if 𝑚(𝑥)|𝑎(𝑥) − 𝑏(𝑥) if and only if
there exists 𝑞(𝑥) ∈ 𝔽[𝑥], 𝑎(𝑥) − 𝑏(𝑥) = 𝑞(𝑥)𝑚(𝑥). If and only if 𝑎(𝑥) = 𝑏(𝑥) + 𝑞(𝑥)𝑚(𝑥)



Definition 5.4.2: Congruence Class

Congruence of 𝑎(𝑥) ∈ 𝔽[𝑥] is denoted by [𝑎(𝑥)]. It consists of

[𝑎(𝑥)] := {𝑏(𝑥) ∈ 𝔽[𝑥] : 𝑏(𝑥) ≡ 𝑎(𝑥) mod 𝑚(𝑥)}

Definition 5.4.3: Polynomial Division Algorithm

Suppose 𝑔(𝑥) ∈ 𝔽[𝑥]. 𝑔(𝑥) = 𝑞(𝑥)𝑚(𝑥) + 𝑟(𝑥), deg 𝑟(𝑥) < deg𝑚(𝑥) or 𝑟(𝑥) = 0. If 𝑟(𝑥) ≡ 𝑔(𝑥) mod 𝑚(𝑥),
so 𝑔(𝑥) ∈ [𝑟(𝑥)]. So every 𝑔(𝑥) is in exactly one of these congruence classes.

Lemma 5.4.1

In ℤ𝑝[𝑥] if deg𝑚(𝑥) = 𝑛, there are exactly 𝑝𝑛 different congruence classes.

Similar to congruence classes in the integers, we also have similar ideas for addition and multiplication for
polynomial congruences.

Definition 5.4.4: Modular Operations

Addition:
[𝑎(𝑥)] + [𝑏(𝑥)] = [𝑎(𝑥) + 𝑏(𝑥)]

Multiplication:
[𝑎(𝑥)][𝑏(𝑥)] = [𝑎(𝑥)𝑏(𝑥)]

We can use this to check if it is well-defined.

Lemma 5.4.2 Well-Defined

Suppose [𝑎(𝑥)] = [𝑐(𝑥)], [𝑏(𝑥)] = [𝑑(𝑥)].

1. [𝑎(𝑥) + 𝑏(𝑥)] = [𝑐(𝑥) + 𝑑(𝑥)]

2. [𝑎(𝑥)𝑏(𝑥)] = [𝑐(𝑥)𝑑(𝑥)]

5.5 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 6

Ideals and Quotient Rings

6.1 Ideals and Quotient Rings

Definition 6.1.1: Quotient Rings

Congruence classes mod 𝑓 (𝑥) are noted by 𝔽[𝑥]/( 𝑓 (𝑥)) which is a ring. The additive identity of this ring
is [0] = [ 𝑓 (𝑥)]. This together is called a quotient ring closed under addition.

Theorem 6.1.1 Class of g(x)

[𝑔(𝑥) ∈ 𝔽[𝑥] is a unit if and only if 𝑔𝑐𝑑( 𝑓 (𝑥), 𝑔(𝑥)) = 1, then 𝑔(𝑥), 𝑓 (𝑥) are relative prime.

Proof: ( ⇐= ). Suppose 𝑔𝑐𝑑( 𝑓 (𝑥), 𝑔(𝑥)) = 1, then there exists 𝑤(𝑥), 𝑣(𝑥) such that 𝑤(𝑥)𝑔(𝑥) + 𝑣(𝑥) 𝑓 (𝑥) = 1, so
[𝑤(𝑥)𝑔(𝑋)] = [1] so [𝑤(𝑥)] = [𝑔(𝑥)]−1.
( =⇒ ). Suppose 𝑤(𝑥)𝑔(𝑥) ≡ 1 mod 𝑓 (𝑥), so 𝑓 (𝑥)|𝑤(𝑥)𝑔(𝑥) − 1 therefore there exists a 𝑣(𝑥) ∈ 𝔽[𝑥].

𝑤(𝑥)𝑔(𝑥) − 1 = 𝑣(𝑥) 𝑓 (𝑥)
𝑤(𝑥)𝑔(𝑥) − 𝑣(𝑥) 𝑓 (𝑥) = 1,

Therefore, 𝑔𝑐𝑑( 𝑓 (𝑥), 𝑔(𝑥)) = 1. ■

Corollary 6.1.1

If 𝑓 (𝑥) is irreducible in 𝔽[𝑥], then 𝔽[𝑥]/( 𝑓 (𝑥)) is a field.

Proof: If 𝑔(𝑥) ∈ 𝔽[𝑥], [𝑔(𝑥)] ≠ [0], 𝑓 (𝑥) ∤ 𝑔(𝑋), then 𝑔𝑐𝑑( 𝑓 (𝑥), 𝑔(𝑥)) = 1, so [𝑔(𝑥)] is a unit in 𝔽[𝑥]/( 𝑓 (𝑥)). ■

Let 𝔼 = 𝔽[𝑥]/( 𝑓 (𝑥)), such that we have an injection from 𝔽 ↦→ 𝔼 where 𝑎 ↦→ [𝑎]. We can consider 𝔽 now
a subfield of 𝔼.

Definition 6.1.2: Roots in Quotient Rings

Suppose 𝔽 ⊆ 𝔼, let 𝛼 = [𝑥], such that 𝑓 (𝑥) ∈ 𝔼[𝑥], then 𝑓 (𝛼) = [0].

Axiom 6.1.1

𝔽 � 𝔼.

Definition 6.1.3: Ideal

Let ℛ be a commutative ring. Given that 𝐼 ⊆ ℛ. We call 𝐼 an ideal if an only if 𝐼 is a subring of ℛ and if
𝑟 ∈ ℛ, 𝑎 ∈ 𝐼, then 𝑟𝑎 ∈ 𝐼.
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Definition 6.1.4: Congruence mod I

Suppose 𝑟, 𝑠 ∈ ℛ, 𝑟 ≡ 𝑠 mod 𝐼 if 𝑟 − 𝑠 ∈ 𝐼.

Theorem 6.1.2 Congruence mod I is an Equivalence Relation

Given 𝑎, 𝑏, 𝑐 ∈ ℛ we have the following properties.
Reflexive. 𝑎 ≡ 𝑎 mod 𝐼 because 𝑎 − 𝑎 = 0 ∈ 𝐼.
Symmetric. 𝑎 ≡ 𝑏 mod 𝐼 , 𝑏 ≡ 𝑎 mod 𝐼 because 𝑏 − 𝑎, 𝑎 − 𝑏 ∈ 𝐼.
Transitive. If 𝑎 ≡ 𝑏 mod 𝐼 , 𝑏 ≡ 𝑐 mod 𝐼, then 𝑎 ≡ 𝑐 mod 𝐼 because 𝑎 − 𝑏, 𝑏 − 𝑐, 𝑎 − 𝑐 ∈ 𝐼.

Definition 6.1.5: Coset

Instead of [𝑎] for 𝑎 mod 𝐼, we have the notation 𝑎 + 𝐼 := {𝑎 + 𝑖 : 𝑖 ∈ 𝐼} called a coset.

For example ℤ𝑚[𝑎] = 𝑎 + 𝑚ℤ

Definition 6.1.6: Quotient Ring

ℛ/𝐼 is called a quotient ring.

Theorem 6.1.3 Addition on Ideals

(𝑎 + 𝐼) + (𝑏 + 𝐼) = 𝑎 + 𝑏 + 𝐼
(𝑎 + 𝐼)(𝑏 + 𝐼) = (𝑎𝑏) + 𝐼

Proof: Suppose 𝑎 + 𝐼 = 𝑐 + 𝐼 and 𝑏 + 𝐼 = 𝑑 + 𝐼. Since 𝑐 − 𝑎, 𝑑 − 𝑏 ∈ 𝐼, then (𝑐 − 𝑎) + (𝑑 − 𝑏) ∈ 𝐼 implies
(𝑐 + 𝑑) − (𝑎 + 𝑏) ∈ 𝐼 which implies 𝑐 + 𝑑 + 𝐼 = 𝑎 + 𝑏 + 𝐼.
To prove multiplication, since 𝑐−𝑎, 𝑑−𝑏 ∈ 𝐼, then 𝑐(𝑑−𝑏), 𝑏(𝑐−𝑎) ∈ 𝐼 due to absorption property. 𝑐(𝑑−𝑏)+𝑏(𝑐−𝑎) ∈
𝐼 =⇒ 𝑐𝑑 − 𝑐𝑏 + 𝑐𝑏 − 𝑏𝑎 ∈ 𝐼. Then 𝑎𝑏 + 𝐼 = 𝑐𝑑 + 𝐼. ■

Quotient Rings are independently associated with homomorphism 𝜙 : ℛ ↦→ 𝒮.

Definition 6.1.7: Generators

If ℛ is any commutative ring, let 𝑎 ∈ ℛ, the ideal generated by a is {𝑟𝑎 : 𝑟 ∈ ℛ} =: (𝑎).

Lemma 6.1.1

(𝑎) is an ideal of ℛ.

Proof: Case 1. if𝑟1𝑎, 𝑟2𝑎 ∈ (𝑎), then 𝑟1𝑎 + 𝑟2𝑎 = (𝑟1 + 𝑟2)𝑎 ∈ (𝑎).
Case 2. if 𝑟𝑎 ∈ (𝑎), 𝑠 ∈ ℛ, then 𝑠(𝑟𝑎) = (𝑟𝑠)𝑎 ∈ (𝑎). ■

These generators are called the principal ideal generated by a.

Theorem 6.1.4

If 𝑝(𝑥) is irreducible in 𝔽[𝑥] if and only if 𝔽[𝑥]/(𝑝(𝑥)) is a field if and only if 𝔽[𝑥]/(𝑝(𝑥)) is an integral
domain.

Let ℛ be a commutative ring with 1 ∈ ℛ. Let 𝐴 be any subset of the ideal generated by 𝐴 which is the set
of all finite linear combinations of elements.

(𝐴) := {𝑟1𝑎2 + . . . + 𝑟𝑛𝑎𝑛 : 𝑟𝑖 ∈ ℛ , 𝑎𝑖 ∈ 𝐴}



Then (𝐴) is the intersection of all ideals in 𝑎 ∈ 𝐴.
Suppose ℛ ∈ ℤ, 𝑎, 𝑏 ∈ ℤ ideal generated by (𝑎, 𝑏) := {𝑥𝑎 + 𝑏𝑦 : 𝑦, 𝑥 ∈ ℤ} = {𝑟 · 𝑔𝑐𝑑(𝑎, 𝑏) : 𝑟 ∈ ℤ}.
ℤ and 𝔽[𝑥] are called principle ideal domains while ℤ[𝑥],ℚ[𝑥, 𝑦] are not principle ideal domains.
𝜙 : ℤ ↦→ ℤ/10ℤ, therefore 𝜙(𝑎) = [𝑎]10 = 𝑎 + 10ℤ.

Definition 6.1.8: Kernel

Let 𝐾 := {𝑥 ∈ ℤ : 𝜙(𝑥) = 0} which we learn is called the kernel of 𝜙, ker𝜙.

Theorem 6.1.5

K is an ideal in ℛ.

From the previous example, ker𝜙 = (10) = 10ℤ. What we learned prior is that ℤ/10ℤ � ℤ10.

Proof of Theorem: (1). Suppose 𝑥, 𝑦 ∈ ker𝜙, then 𝜙(𝑥) = 𝜙(𝑦) = 0, 𝜙(𝑥 + 𝑦) = 𝜙(𝑥) + 𝜙(𝑦) = 0.
(2). Suppose 𝑥, 𝑦 ∈ ker𝜙, 𝑟 ∈ ℛ, then (𝑟𝑥) = 𝜙(𝑟)𝜙(𝑥) = 𝜙(𝑟)0 = 0.
So ker𝜙 is an ideal in ℛ. ■

Definition 6.1.9: Image

Im𝜙 := {𝑠 ∈ 𝑆 : ∃𝑟 ∈ ℛ , 𝜙(𝑟) = 𝑆}

Theorem 6.1.6 First Isomorphism Theorem

Suppose 𝜙 : ℛ ↦→ 𝒮 is a homomorphism. Let 𝐾 = ker𝜙. We can define 𝜙 : ℛ/𝐾 ↦→ Im𝜙 such that

𝜙(𝑟 + 𝐾) = 𝜙(𝑟). Then 𝜙 is an isomorphism from ℛ/𝐾 to Im𝜙, so ℛ/𝐾 � Im𝜙.

Proposition 6.1.1

Suppose 𝜙 : ℛ ↦→ 𝒮 is a ring homomorphism, then 𝜙 is injective if and only if ker𝜙 = {0}.

Proof of Proposition: ( =⇒ ). Suppose 𝜙 is injective. Let 𝑟 ∈ ker𝜙, so 𝜙(𝑟) = 0, but 𝜙(0) = 0, so 𝜙 is
injective 𝑟 = 0.
( ⇐= ). Suppose ker𝜙 = {0}. Let 𝑟, 𝑠 ∈ ℛ with 𝜙(𝑟) = 𝜙(𝑠).

𝜙(𝑟) − 𝜙(𝑠) = 0

𝜙(𝑟 − 𝑠) = 0.

So 𝑟 − 𝑠 ∈ ker𝜙, so 𝑟 − 𝑠 = 0, therefore 𝑟 = 𝑠. Therefore 𝜙 is injective. ■

Proof of First Isomorphism Theorem: Assume 𝜙 is a homomorphism. Suppose 𝑟, 𝑠 ∈ ℛ, 𝜙(𝑟 + 𝑠) =

𝜙(𝑟) + 𝜙(𝑠), 𝜙(𝑟𝑠) = 𝜙(𝑟)𝜙(𝑠)
𝜙 is surjective. Suppose 𝑠 ∈ Im𝜙, then ∃𝑟 ∈ ℛ such that 𝜙(𝑟) = 𝑠, so 𝜙(𝑟) = 𝑠. ■

Example 6.1.1

Prove ℚ[𝑥]/(𝑥2 − 2) � ℚ(
√
2).

Proof: Define 𝜙 : ℚ[𝑥] ↦→ ℂ so 𝜙( 𝑓 (𝑥)) = 𝑓 (
√
2). Let ker𝜙 := { 𝑓 (𝑥) ∈ ℚ[𝑥] : 𝑓 (

√
2) = 0}.

𝑥2 − 2 ∈ ker𝜙

Claim.ker𝜙 is the ideal generated by 𝑥2 − 2.

By the first isomorphism theorem, we find that ℚ[𝑥]/(𝑥2 − 2) � ℚ(
√
2) ■



6.2 Field Extensions

Definition 6.2.1: Vector Space

A vector space over 𝔽 is an additive abelian (commutative) group 𝑉 equipped with scalar multiplication
such that 𝑎, 𝑎1 , 𝑎2 ∈ 𝔽 and 𝑣, 𝑣1 , 𝑣2 ∈ 𝑉.

1. 𝑎(𝑣1 + 𝑣2) = 𝑎𝑣1 + 𝑎𝑣2.

2. (𝑎1 + 𝑎2)𝑣 = 𝑎1𝑣 + 𝑎2𝑣.

3. 𝑎1(𝑎2𝑣) = (𝑎1𝑎2)𝑣.

4. 1=𝑣.

Definition 6.2.2: Span

If every element of a vector space 𝑉/𝔽 is in a linear combination, we say set {𝑣1 , 𝑣2 , . . . , 𝑣𝑛} span 𝑉/𝔽.

Definition 6.2.3: Linearly Independent

A subset of a vector space 𝑉/𝔽 is linearly independent over 𝔽 when there is a linear combination with
𝑐𝑖 ∈ 𝔽, then 𝑐𝑖 = 0𝔽 for all 𝑖. else is dependent.

Definition 6.2.4: Basis

The subset is linearly independent and spans 𝑉/𝔽.

Definition 6.2.5: Dimension

If 𝑝(𝑥) ∈ 𝔽[𝑥] is irreducible, then 𝔼 is an extension field of 𝔽. In fact this is called a vector space over 𝔽.
Denoted by [𝔼 : 𝔽].

Theorem 6.2.1

Suppose 𝐾 is an extension field of dimension [𝐾 : 𝔼], then

[𝐾 : 𝔽] = [𝐾 : 𝔼][𝔼 : 𝔽].

Proof: Suppose [𝔼 : 𝔽] = 𝑛. Suppose 𝑣1 , . . . , 𝑣𝑛 ∈ 𝔼 which are basis for 𝔼/𝔽. Suppose [𝐾 : 𝔼] = 𝑚. Suppose
𝑤1 , . . . , 𝑤𝑚 ∈ 𝐾, basis for 𝐾/𝔼. Our claim is that {𝑤𝑖𝑣 𝑗 : 1 ⩽ 𝑖 ⩽ 𝑚, 1 ⩽ 𝑗 ⩽ 𝑛} is the basis for 𝐾/𝔽. Which can
also be stated as {𝑤𝑖𝑣 𝑗} span K. Let 𝑢 ∈ 𝐾, {𝑤𝑖} span 𝐾/𝔼. So 𝑢 =

∑
𝛼𝑖𝑤𝑖 , 𝛼𝑖 ∈ 𝔼. Each 𝛼𝑖 =

∑
𝛽𝑖 𝑗𝑣 𝑗 , 𝛽𝑖 𝑗 ∈ 𝔽,

so 𝑢 =
∑

𝛽𝑖 𝑗𝑤𝑖𝑣 𝑗 . So {𝑤𝑖𝑣 𝑗} span 𝐾.
Suppose

∑
𝛽𝑖 𝑗𝑣 𝑗𝑤𝑖 = 0, ∀𝑖 ,∑ 𝛽𝑖 𝑗𝑣 𝑗 ∈ 𝔼 since {𝑤𝑖} are linearly independent /𝔼.∑

𝛽𝑖 𝑗𝑣 𝑗 = 0 for each i.
Since {𝑣 𝑗} are a basis for 𝔼/𝔽, 𝛽𝑖 𝑗 = 0 for each 𝑗 , 𝑖. Suppose 𝔼 is an extension field of 𝔽 and 𝑢 ∈ 𝔼. ■

Definition 6.2.6: Algebraic and Transcendental Functions

Let 𝔽 = ℚ, 𝔼 = ℝ, 𝑢 = 𝜋. There is no polynomial 𝑝(𝑢) = 0, 𝑝(𝑥) ∈ ℚ. If there is no such polynomial, we
say 𝑢 is transcendental /𝔽.
If there is such a polynomial, we say 𝑢 is algebraic /𝔽.

To understand two versions of field extensions, let’s look at when ℚ[𝛼] = ℚ(𝛼). We can use the first
isomorphism theorem.



Lemma 6.2.1 ℚ[𝛼] = ℚ(𝛼)

A function 𝜙 : ℚ[𝑥] ↦→ ℚ[𝛼] is injective ⇐⇒ ker𝜙 = {0};
⇐⇒ � 𝑓 (𝑥) ∈ ℚ[𝑥] : 𝑓 (𝑥) = 0;

⇐⇒ 𝛼 is transcendental of ℚ.

Proof Part One: Using the first isomorphism theorem, we can let 𝜙 be a homomorphism,

Im𝜙 = { 𝑓 (𝛼) : 𝑓 (𝑥) ∈ ℚ[𝛼]} = ℚ[𝛼].

So it is a surjective function. In fact

ker𝜙 = { 𝑓 (𝑥) ∈ ℚ[𝑥] : 𝑓 (𝑥) = 0},

This 𝜙 is injective. Suppose 𝛼 is transcendental/ℚ, then ℚ[𝛼] � ℚ[𝑥]. Therefore ℚ[𝛼] is a ring, not a field. ■

Definition 6.2.7: Minimal Polynomial

Suppose 𝑝(𝑥) is a monic polynomial of the smallest degree, this is called the minimal polynomial of 𝛼/ℚ.

Lemma 6.2.2

𝑝(𝑥) is irreducible.

Proof: Suppose

𝑝(𝛼) = 𝑞(𝑥)𝑔(𝑥)
= 𝑞(𝑥)𝑔(𝑥) = 0.

So either 𝑞(𝑥) = 0 or 𝑔(𝑥) = 0. Since 𝑝(𝑥) is the smallest degree, either 𝑞(𝑥) or 𝑔(𝑥) is a unit in ℚ[𝑥]. ■

Continuation of Proof Sketch of Lemma 7.0.1: Using the first isomorphism, suppose 𝛼 is algebraic. Let
ℚ[𝑥] ↦→ ℚ[𝛼] and this map has ker𝜙 = (𝑝(𝑥)). 𝑝(𝑥) is an irreducible minimal polynomial of 𝛼. Therefore
ℚ[𝑥]/(𝑝(𝑥)) � ℚ[𝑥]. Since 𝑝(𝑥) is irreducible, then ℚ[𝑥]/(𝑝(𝑥)) so ℚ(𝑥) is a field and ℚ[𝛼] = ℚ(𝛼). ■

We have previously learned that ℚ(𝑟) is a vector space.

ℚ(𝑟) = ℚ[𝑟]
What is the dim[ℚ[𝑟] : ℚ]? We have to find the basis. So what is the basis of ℚ[𝑟]/ℚ?

Lemma 6.2.3

A basis is 1, 𝑟 , 𝑟2 , . . . , 𝑟𝑛−1 where 𝑛 = deg 𝑓 (𝑥).

Proof: ℚ[𝑟] = { 𝑓 (𝑥) : 𝑓 (𝑥) ∈ ℚ[𝑥]}. | 𝑓 (𝑟) = 0, deg 𝑓 (𝑥) = 𝑛 |. ■

Lemma 6.2.4

Basis when we mod out 𝑓 (𝑥), therefore 𝑓 (𝑥) is the minimum polynomial or 𝑟/ℚ.

Proof: Suppose 𝑔(𝑥) ∈ ℚ[𝑟]. By the division algorithm, 𝑔(𝑥) = 𝑓 (𝑥)𝑞(𝑥) + 𝑠(𝑥). Plug in r:

𝑔(𝑟) = 𝑓 (𝑟)𝑞(𝑟) + 𝑠(𝑟),

so 𝑔(𝑟) = 𝑠(𝑟) since 𝑓 (𝑟) = 0. Therefore 𝑠(𝑟) = 0 or deg 𝑠(𝑟) < deg 𝑓 (𝑥) or 𝑠(𝑟) is some polynomial. So 𝑔(𝑟) is the
linear combination of 1, 𝑟 , . . . , 𝑟𝑛−1. So 1, 𝑟 , 𝑟2 , . . . , 𝑟𝑛−1 span ℚ[𝑟] = ℚ(𝑟). ■



6.3 Exercises

I will work on these soon, but the base content is stabilized now.



Chapter 7

Geometric Constructions

7.1 Constructible Shapes

Which regular n-gons can be constructed?

Definition 7.1.1: Construct

𝑎 is constructible if you can construct a line of length a.

Definition 7.1.2: Constructible Point

A point in ℝ2 is constructible if its coordinates are constructible.

Definition 7.1.3: Constructible Line

A constructible line is made of constructible points.

Theorem 7.1.1

Constructible numbers are in the extension field ℚ.

Proof: Suppose 𝑎, 𝑏 are constructible, they are closed under subtraction. ■

Theorem 7.1.2

𝔽 is constructible so is
√
𝑎.

Proof: Suppose a triangle is enclosed in a semicircle with triangle length 1 and radius 𝑎+1
2 . The distance, x, is

𝑎+1
2 .

𝑥2 =

(
𝑎 + 1

2

)2
−
(
𝑎 − 1

2

)2
= 𝑎

Which shows distance 𝑥 =
√
𝑎 ■

Suppose we have constructible points, how do we get new points intersecting lines, circles, and lines on
circles?
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Definition 7.1.4: New Constructible Points

𝔽[𝛼] where [𝔽[𝛼 : 𝔽] = 2. Which means any constructible point lies in a field:

ℚ ⊆ ℚ[𝑎1] ⊆ ℚ[𝑎1 , 𝑎2] ⊆ . . . ⊆ 𝔽

Therefore 𝔽𝑘 = 𝔽𝑘−1[𝑎𝑘], thus [𝔽𝑘 : 𝔽𝑘−1] = 2.

Let 𝛼 be the root of a quadratic polynomial. So no constructible numbers must lie in field 𝔽 where the
[𝔽 : ℚ] = 2𝑛 for some n. Therefore

3
√
2 is not constructible.

Lemma 7.1.1 Constructible Points

Let 𝑟 ∈ ℝ be a constructible with a straightedge and compass ⇐⇒ r lies in a field extension, 𝔼 with
[𝔼 : ℚ] = 2𝑛 (power of 2).

𝜋 is not constructible and neither is it algebraic. Therefore constructible points are also only possible iff
[ℚ(𝑟) : ℚ] = 2𝑘 for some 𝑘. We will show that we cannot trisect 60◦ since we can construct 60◦, implying that
not every angle can be trisected.
Because 20◦ = 𝜃 = 𝜋

4 can be constructed the cos𝜃 can be constructed.

𝑐𝑜𝑠2𝜃 = cos2 𝜃 − sin2 𝜃

= 2𝑐𝑜𝑠2𝜃 − 1

cos 3𝜃 = 4 cos3 𝜃 − 3 cos𝜃

If 𝜃 = 𝜋
4 then cos 3𝜃 = 1

2 and let 𝑥 = cos 20. Then

1

2
= 4𝑥3 − 3𝑥

0 = 4𝑥3 − 3𝑥
1

2

0 = 8𝑥3 − 6𝑥 − 1

We claim that 8𝑥3 − 6𝑥 − 1 is irreducible/ℚ, which we can use the root test to check that it is indeed
irreducible.

Question: Which regular n-gons can be constructed? i.e. for which n can angle 2𝜋
𝑛 be constructed.

Such an angle can be constructed if and only iff cos 2𝜋
𝑛 , sin

2𝜋
𝑛 can be constructed

cos 2𝜋
𝑛

sin 2𝜋
𝑛

1

2𝜋
𝑛𝐴

𝐵

𝑐 𝑎

𝑏

if and only iff (cos 2𝜋
𝑛 , sin

2𝜋
𝑛 ) is a constructable point if and only if 𝜌 = cos 2𝜋

𝑛 + sin 2𝜋
𝑛 , [ℚ(𝜌) : ℚ] = power of two,

𝜌𝑛 = 1, 𝜌 is an 𝑛𝑡ℎ root of 1 satisfying 𝑥𝑛 − 1 = 0. Suppose 𝑛 = 2𝑎1𝑝𝑎22 . . . 𝜌𝑎𝑘
𝑘

is a factorization of regular n-gons
is 𝑝1 = 2, 𝑝 odd for 𝑗 ⩾ 2 constructable if and only if 𝑎 𝑗 = 1 for 𝑗 ⩾ 2 and each 𝑝𝑖 − 𝑔𝑜𝑛 is constructable.



Definition 7.1.5: Fermat Prime

If 22
𝑘 + 1 = 𝑝 is prime, then 𝑝 is a fermat prime.

Corollary 7.1.1

Let 𝜙 : ℚ[𝑥] ↦→ ℚ[𝑥] := { 𝑓 (𝑥) : 𝑓 (𝑥) ∈ ℚ[𝑥]}. By 𝜙(𝑝(𝑥)) = 𝑝(𝛼), this shows surjectivity. Proof. Suppose
𝛽 ∈ ℚ[𝑥], then ∃ 𝑓 (𝑥) ∈ ℚ[𝑥] such that 𝛽 = 𝑓 (𝑥), so 𝜙( 𝑓 (𝑥)) = 𝑓 (𝛼) = 𝛽. Q.E.D 𝜙 is injective if and only if
ker𝜙 = {0}. This is a consequence of the first isomorphism theorem.

Proof: ker𝜙 = {0} ⇐⇒ ( 𝑓 (𝑥) = 0 =⇒ 𝑓 (𝑥) = 0) ⇐⇒ 𝛼/ℚ is transendental ■

7.2 Exercises

I will work on these soon, but the base content is stabilized now.



Solutions to Exercises

Chapter 1

Proof of Exercise 1: Let
𝑎 = 𝑞𝑏 + 𝑟 and 0 ⩽ 𝑟 < 𝑏.

If 𝑎𝑐 is divided by 𝑏𝑐, then we could multiply all sides by 𝑐 such that

𝑎𝑐 = (𝑞𝑏)𝑐 + 𝑟𝑐,

then rearrange to so associativity. Then
𝑎𝑐 = 𝑞(𝑏𝑐) + 𝑟𝑐,

thus showing that when 𝑎𝑐 is divided by 𝑏𝑐, we have the remainder 𝑟𝑐. ■

Proof of Exercise 2: Let
𝑎𝑐 = 𝑞𝑏 + 𝑟 and 0 ⩽ 𝑟 < 𝑏.

Suppose 𝑞 is divided by 𝑐 results in the equation

𝑞 = 𝑘𝑐 + 𝑟2.

Let this value of 𝑞 replace 𝑞 in the 𝑎𝑐 divided by 𝑏.

𝑎 = (𝑘𝑐 + 𝑟2)𝑏 + 𝑟
= 𝑘𝑏𝑐 + 𝑏𝑟2 + 𝑟.

Claim. Since 𝑟2 < 𝑐, then 𝑟2 < 𝑏𝑐, and since 𝑟 < 𝑏, then we also have that 𝑏𝑟2 + 𝑟 < 𝑏𝑐.
𝑏𝑟2 ⩽ 𝑏(𝑐 − 1), and 𝑟 ⩽ 𝑏 − 1, thus we have the equation 𝑏(𝑐 − 1) + 𝑏 − 1 < 𝑏𝑐.

𝑏𝑐 − 𝑏 + 𝑏 − 1 < 𝑏𝑐

𝑏𝑐 − 1 < 𝑏𝑐.

Thus we have shown that the remainders can never be greater than 𝑏𝑐, our divider. Thus this satisfies the
statement that when 𝑎 is divided by 𝑏𝑐, then the quotient is also 𝑘. ■

Proof of Exercise 3: ( =⇒ ). Given that 𝑎 = 𝑛𝑏+ 𝑟 and 𝑐 = 𝑛𝑑+ 𝑟, as they have the same remainder, then let

𝑎 − 𝑐 = 𝑛𝑏 + 𝑟 − 𝑛𝑑 − 𝑟
𝑎 − 𝑐 = 𝑛(𝑏 − 𝑑) + 𝑟 − 𝑟.

Let there exist an integer 𝑘 = 𝑏 − 𝑑 such that 𝑎 − 𝑐 = 𝑛𝑘. ( ⇐= ). Suppose 𝑎 − 𝑐 = 𝑛𝑘, then we can rewrite this
in the form of the division algorithm such that

𝑎 = 𝑛𝑘 + 𝑐
𝑐 = 𝑛𝑞 + 𝑟.

Replace the values accordingly:

𝑎 = 𝑛𝑘 + 𝑛𝑞 + 𝑟
= 𝑛(𝑘 + 𝑞) + 𝑟.

Since 𝑟 is the remainder for 𝑛 dividing 𝑐, and as shown we also have it such that it is the remainder for 𝑎. Thus
showing that it is the same remainder. ■
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Proof of Exercise 4.: ( =⇒ ). Given 𝑎 = 𝑏𝑛, then 𝑎 = (−𝑏)(−𝑛), which shows that (−𝑏)|𝑎.
( ⇐= ). Given 𝑎 = (−𝑏)𝑛, then 𝑎 = 𝑏(−𝑛), thus 𝑏 |𝑎. ■

Proof of Exercise 5: Given 𝑏 = 𝑎𝑛 and 𝑐 = 𝑏𝑚, then 𝑐 = 𝑎𝑛𝑚. Therefore 𝑐 = 𝑎(𝑛𝑚), thus 𝑎 |𝑐. ■

Proof of Exercise 6: Given 𝑏 = 𝑎𝑛 and 𝑐 = 𝑎𝑚, then 𝑏 + 𝑐 = 𝑎𝑛 + 𝑎𝑚. Therefore 𝑏 + 𝑐 = 𝑎(𝑛 + 𝑚), thus
𝑎 |(𝑏 + 𝑐). ■

Proof of Exercise 7: Given 𝑏 = 𝑎𝑛 and 𝑐 = 𝑎𝑚, then 𝑏𝑟 + 𝑐𝑡 = 𝑎𝑛𝑟 + 𝑎𝑚𝑡. Therefore 𝑏𝑟 + 𝑐𝑡 = 𝑎(𝑛𝑟 + 𝑚𝑡),
thus 𝑎 |(𝑏𝑟 + 𝑐𝑡). ■

Proof of Exercise 8: Let 𝑏 = 𝑎𝑚 and 𝑎 = 𝑏𝑛. Then 𝑎 = 𝑎𝑚𝑛, when we substitute in 𝑏. Thus 𝑚𝑛 = 1, and
since we are in the integers, the only divisors of 1 are −1, 1. Thus 𝑎 = ±𝑏. ■

Proof of Exercise 9: Let 𝑏 = 𝑎𝑛 and 𝑑 = 𝑐𝑚, then 𝑏𝑑 = 𝑎𝑛𝑐𝑚. Therefore 𝑏𝑑 = (𝑎𝑐)(𝑛𝑚), thus 𝑎𝑐 |𝑏𝑑. ■

Proof of Exercise 10: Using the extended gcd algorithm:

0 = 𝑎𝑞 + 𝑟

Let 𝑞 = 1 and 𝑟 = −𝑎.

0 = 𝑎(1) − 𝑎
𝑎 = 𝑎(1) + 0.

Then the gcd of (𝑎, 0) is a. ■

Proof of Exercise 11: Using the extended gcd algorithm, let

𝑛 + 1 = 𝑛(1) + 1.

Thus we have found that the gcd of (𝑛, 𝑛 + 1) is 1. ■

Proof of Exercise 12: Given 𝑐 = 𝑎𝑚 and 𝑐 = 𝑏𝑛, then 𝑎, 𝑏 are two divisors of 𝑐. ■

Proof of Exercise 13: Given 𝑛 ∈ 𝑍,

𝑛 + 2 = 𝑛(1) + 2

𝑛 = 2𝑞 + 𝑟

Case 1: n is even.
Then 2 is the greatest common divisor of (𝑛, 𝑛 + 2). This is due to 2 being able to evenly divide 𝑛.
Case 2: n is odd.

𝑛 = 2𝑞 + 1

2 = 1(2)

Then 1 is the greatest common divisor of (𝑛, 𝑛 + 2). This is due to 1 being able to continue the extended gcd
algorithm and we find 1 can evenly divide 2.
Thus the only solutions are that 𝑔𝑐𝑑(𝑛, 𝑛 + 2) = 1 or 2. ■

Proof of Exercise 14: By the linear combination of 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑, we find that 𝑎𝑥 + 𝑏𝑦 = 𝑑. Therefore

𝑎

𝑑
𝑥 + 𝑏

𝑑
𝑦 = 1.

Thus 𝑔𝑐𝑑( 𝑎
𝑑
, 𝑏
𝑑
) = 1. ■

Proof of Exercise 15: Let 𝑐 = 𝑏𝑛, therefore 𝑎 |𝑏𝑛, but since 𝑔𝑐𝑑(𝑎, 𝑏) = 1, then 𝑎 |𝑛. Therefore 𝑎𝑏 |𝑏𝑛, thus
𝑎𝑏 |𝑐. ■



Proof of Exercise 16: Let 𝑎𝑥 + 𝑐𝑦 = 1 and 𝑏𝑛 + 𝑐𝑚 = 1. Then

(𝑎𝑥 + 𝑐𝑦)(𝑏𝑛 + 𝑐𝑚) = 1 · 1.
𝑎𝑏(𝑥𝑛) + 𝑐(𝑏𝑦𝑛 + 𝑎𝑥𝑚 + 𝑐𝑦𝑚) = 1

Thus the gcd of (𝑎𝑏, 𝑐) = 1. ■

Proof of Exercise 17: Suppose that 𝑎 |𝑐 and 𝑏 |𝑐 and the 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑. If the greatest common divisor of a
and b is d, then a and b can be written in terms of d and some integer 𝑥, 𝑦 ∈ ℤ, and also c in terms of 𝑚, 𝑛 ∈ ℤ

with a and b, such that

𝑑 |𝑎 ⇐⇒ 𝑎 = 𝑑𝑥

𝑑 |𝑏 ⇐⇒ 𝑏 = 𝑑𝑦

𝑎 |𝑐 ⇐⇒ 𝑐 = 𝑎𝑚

𝑏 |𝑐 ⇐⇒ 𝑐 = 𝑏𝑛.

Therefore, given 𝑡 ∈ ℤ when we have the equivalence of 𝑎𝑏 |𝑐𝑑, we can substitute values into a and b to show
divisibility. Hence

𝑎𝑏 |𝑐𝑑 ⇐⇒ 𝑐𝑑 = 𝑎𝑏𝑡

⇐⇒ 𝑐𝑑 = (𝑑𝑥)𝑏𝑡
⇐⇒ 𝑐𝑑 = 𝑎(𝑑𝑦)𝑡

It can also be done the other way by replacing c with some value with a or b:

𝑎𝑏 |𝑐𝑑 ⇐⇒ 𝑐𝑑 = 𝑎𝑏𝑡

⇐⇒ (𝑎𝑚)𝑑 = 𝑎𝑏𝑡

⇐⇒ (𝑏𝑛)𝑑 = 𝑎𝑏𝑡.

Also note that since a and b also divide c, since the multiplication of c and d result in some multiple of each
other, a and b can also divide any multiple of c, regardless of the statement that 𝑑 |𝑎 and 𝑑 |𝑏. ■

Proof of Exercise 18: Suppose 𝑎 > 0 and 𝑏 > 0. Then 𝑎𝑏 > 0, therefore 𝑎𝑏 is some common multiple of a
and b, but nothing to show that it is the least common multiple of 𝑎𝑏. Suppose there exists 𝑚, 𝑥, 𝑦 ∈ ℤ, then
𝑚 |𝑎 and 𝑚 |𝑏, such that 𝑚 |𝑎𝑏. Thus

𝑚 |𝑎 ⇐⇒ 𝑎 = 𝑚𝑥

𝑚 |𝑏 ⇐⇒ 𝑏 = 𝑚𝑦

𝑚 |𝑎𝑏 ⇐⇒ 𝑎𝑏 = (𝑚𝑥)(𝑚𝑦)

So there is a common divisor of a and b, which is m. Now suppose that there exists a d such that 𝑑 |𝑎, 𝑑 |𝑏, and
𝑑 |𝑚, but 𝑑 ⩽ 𝑚. Because of this, given some 𝑡 ∈ ℤ,

𝑑 |𝑚 ⇐⇒ 𝑚 = 𝑑𝑡

Thus,

𝑔𝑐𝑑(𝑎, 𝑏) = 𝑚 = 𝑑𝑡.

Now that we have an integer representation of the 𝑔𝑐𝑑(𝑎, 𝑏), then let us rearrange the problem to satisfy this new



standing:

𝑙𝑐𝑚[𝑎, 𝑏] = 𝑎𝑏

𝑔𝑐𝑑(𝑎, 𝑏)

𝑙𝑐𝑚[𝑎, 𝑏] = (𝑚𝑥)(𝑚𝑦)
𝑚

𝑙𝑐𝑚[𝑎, 𝑏] =
(𝑑𝑡𝑥)(𝑑𝑡𝑦)

𝑑𝑡

𝑙𝑐𝑚[𝑎, 𝑏] = 𝑑𝑡𝑥𝑦

𝑙𝑐𝑚[𝑎, 𝑏] = 𝑚𝑥𝑦

⇐⇒ (𝑚𝑥)𝑦
⇐⇒ 𝑥(𝑚𝑦).

Given some value for 𝑎𝑏 and the 𝑔𝑐𝑑(𝑎, 𝑏), if we are to divide such numbers, then we would get the least
representation of such numbers such that, they are the least common multiple of a and b. If we are to take the
divisors of a and b, which are: m and x, or m and y. Then the least common divisor is equal to the product of m,
x, and y as they make up a and b. This is because it can be rearranged into some multiple of a or b, as shown,
𝑙𝑐𝑚[𝑎, 𝑏] = 𝑚𝑥𝑦. Hence 𝑙𝑐𝑚[𝑎, 𝑏] = 𝑎𝑏

𝑔𝑐𝑑(𝑎,𝑏) . ■

Proof of Exercise 19: This is something that I spent time focusing personal research on. The prime omega
function, which counts how many primes factors there are for a specified integer, can be restricted to the square

root of that integer, as there cannot be any prime integer greater than ⌊
√
25 − 1⌋ = 5. Therefore, we can test 2,3,

and 5, and none of them divide 25 − 1 = 31 evenly. Therefore, it is prime.

Similarly, ⌊
√
27 − 1⌋ = 11, 2 ∤ 127, 3 ∤ 127, 5 ∤ 127, 7 ∤ 127, 11 ∤ 127. ■

Proof of Exercise 20: If the 𝑔𝑐𝑑(𝑝, 10) = 2, then it must be even thus 𝑝 cannot be even. And even if it is
not specifically 2, but instead also 4, 6, or 8, then we should note that 2 is still a divisor of such ”prime” above
5, which means the integer must still be even. Thus we can rule out all even remainders. Now consider 𝑟 = 5, for
some remainder, r. Thus the 𝑔𝑐𝑑(𝑝, 10) = 5, which comes to show that 𝑝 is not prime. ■

Proof Of Exercise 21: ( =⇒ ). If 𝑝 is prime and 𝑎 < 𝑝, then the 𝑔𝑐𝑑(𝑎, 𝑝) = ±1,±𝑝. Since the only divisors
of 𝑝 prime is these two factors. If 𝑎 ⩾ 𝑝, then 𝑔𝑐𝑑(𝑎, 𝑝) = 𝑝.
( ⇐= ). If 𝑔𝑐𝑑(𝑎, 𝑝) = 1, or 𝑝 |𝑎, then this shows that the only divisors of 𝑝 is in fact, ±1 and ±𝑝. ■

Proof of Exercise 22: Let’s assume that p is not prime. Then p would have some divisors 𝑑, 𝑡 ∈ ℤ, such that

𝑝 = 𝑑𝑡.

Then according to our assumption, if p is not prime, then 𝑝 |𝑑 or 𝑝 |𝑡. Therefore, when 𝑝 | 𝑑, then 𝑑 = ±𝑝 and
𝑡 = ±1. Or when 𝑝 | 𝑡, then 𝑡 = ±𝑝, and 𝑑 = ±1. Thus p is prime. ■

Proof of Exercise 23: The idea of this question is that there exists an integer 𝑑 ∈ ℤ such that

𝑑 = 𝑝𝑛11 𝑝𝑛22 . . . 𝑝
𝑛𝑖
𝑘
,

where the 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑. This integer is some common divisor of both a and b, such that each 𝑛𝑖 is the minimum
count of 𝑟𝑖 and 𝑠𝑖 . If we are to see a more literal viewing of this statement, then we can readjust the value of a
as:

𝑎 = 𝑝𝑛11 𝑝𝑟1−𝑛11 𝑝𝑛22 𝑝𝑟2−𝑛22 . . . 𝑝
𝑛𝑖
𝑘
𝑝
𝑟𝑖−𝑛𝑖
𝑘

= 𝑑(𝑝𝑟1−𝑛11 𝑝𝑟2−𝑛22 . . . 𝑝
𝑟𝑖−𝑛𝑖
𝑘

).

However, how do we know that 𝑛𝑖 is the minimum between 𝑟𝑖 and 𝑠𝑖 . Suppose that there is a divisor 𝑞 ∈ ℤ, such
that:

𝑞 = 𝑝𝑣11 𝑝
𝑣2
2 . . . 𝑝

𝑣𝑖
𝑘
.



Then if 𝑣𝑖 < 𝑚𝑖𝑛{𝑟𝑖 , 𝑠𝑖}, then q will not be the greatest common divisor, as there is some divisor that includes
more power in a kth prime. And if 𝑣𝑖 > 𝑚𝑖𝑛{𝑟𝑖 , 𝑠𝑖}, then the same powers of a or b will result in 𝑝𝑟𝑖−𝑣𝑖

𝑘
, which may

become a negative power, which will create a fractional value instead of an integer prime, thus also not possible.
Therefore 𝑣𝑖 must be 𝑣𝑖 = 𝑚𝑖𝑛{𝑟𝑖 , 𝑠𝑖} = 𝑛𝑖 . Continuing back with the proof (from 𝑎 = . . . ), similarly, we can do
the same for 𝑏, such that it will contain the common divisors of both a and b. Therefore, the 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑. ■

Proof of Exercise 24: Consider a 𝑙𝑐𝑚[𝑥, 𝑦], given some 𝑥, 𝑦 ∈ ℤ, then this lcm will be equal to the lowest

possible multiple of both x and y. In problem 33, we prove that the 𝑙𝑐𝑚[𝑎, 𝑏] = 𝑎𝑏
𝑔𝑐𝑑(𝑎,𝑏) , and this statement further

proves this statement, which we can break up into simpler statements. Since a and b are a product of primes,
then what we do in the numerator of the previous fraction is add all powers of primes together, and then divide
it by the greatest common divisors of each, which will lead to a least common multiple. Since we have proved in
the previous part of this question, the 𝑔𝑐𝑑(𝑎, 𝑏) is equal to some integer 𝑑 ∈ ℤ, such that d contains the minimum
power common divisor in both a and b.
Now that we have broken down the problem into ideas we can actually use, we can proceed to prove the problem.
Given that

𝑎 = 𝑝𝑟11 𝑝
𝑟2
2 . . . 𝑝

𝑟𝑖
𝑘

𝑏 = 𝑝𝑠11 𝑝
𝑠2
2 . . . 𝑝

𝑠𝑖
𝑘

𝑎𝑏 = 𝑝𝑟11 𝑝
𝑠1
1 𝑝

𝑟2
2 𝑝

𝑠2
2 . . . 𝑝

𝑟𝑖
𝑘
𝑝
𝑠𝑖
𝑘

𝑎𝑏

𝑔𝑐𝑑(𝑎, 𝑏) =
𝑝𝑟11 𝑝

𝑠1
1 𝑝

𝑟2
2 𝑝

𝑠2
2 . . . 𝑝

𝑟𝑖
𝑘
𝑝
𝑠𝑖
𝑘

𝑝𝑛11 𝑝𝑛22 . . . 𝑝
𝑛𝑖
𝑘

= 𝑝𝑟1+𝑠1−𝑛11 𝑝𝑟2+𝑠2−𝑛22 . . . 𝑝
𝑟𝑖+𝑠𝑖−𝑛𝑖
𝑘

.

Note that when we subtract 𝑛𝑖 from 𝑟𝑖 + 𝑠𝑖 , we are left with the maximum of 𝑟𝑖 or 𝑠𝑖 . This is because we are
subtracting the lesser of 𝑟𝑖 and 𝑠𝑖 from each power, and that means we are left with the other term. To understand
this in simpler terms, let’s suppose that 𝑛4 = 𝑚𝑖𝑛{𝑟4 , 𝑠4} = 𝑠4. Therefore, the fourth integer in the factorization
will equal 𝑝𝑟4+𝑠4−𝑠44 = 𝑝𝑟44 , and similarly, we can do the same for each of the factors in 𝑎𝑏.
Therefore we have just shown that

𝑙𝑐𝑚[𝑎, 𝑏] = 𝑝
𝑟1+𝑠1−𝑚𝑖𝑛{𝑟1 ,𝑠1}
1 𝑝

𝑟2+𝑠2−𝑚𝑖𝑛{𝑟2 ,𝑠2}
2 𝑝

𝑟3+𝑠3−𝑚𝑖𝑛{𝑟3 ,𝑠3}
3 . . . 𝑝

𝑟𝑖+𝑠𝑖−𝑚𝑖𝑛{𝑟𝑖 ,𝑠𝑖 }
𝑘

= 𝑝
𝑚𝑎𝑥{𝑟1 ,𝑠1}
1 𝑝

𝑚𝑎𝑥{𝑟2 ,𝑠2}
2 𝑝

𝑚𝑎𝑥{𝑟3 ,𝑠3}
3 . . . 𝑝

𝑚𝑎𝑥{𝑟𝑖 ,𝑠𝑖 }
𝑘

= 𝑝𝑡11 𝑝
𝑡2
2 𝑝

𝑡3
3 . . . 𝑝

𝑡𝑖
𝑘
.

Thus we have reached the conclusion that 𝑙𝑐𝑚[𝑎, 𝑏] = 𝑝𝑡11 𝑝
𝑡2
2 𝑝

𝑡3
3 . . . 𝑝

𝑡𝑖
𝑘
, where 𝑡𝑖 = maximum of 𝑟𝑖 , 𝑠𝑖 . ■

Proof of Exercise 25: Suppose that 𝑎 | 𝑏, then given some 𝑥 ∈ ℤ

𝑏 = 𝑎𝑥.

Since this is the case, then we can square both sides and simplify given that 𝑦 = 𝑥2

𝑏2 = 𝑎2𝑥2

= 𝑎2𝑦,

which comes to show that 𝑏2 is divisible by 𝑎2.
We can show this in the reverse direction to show a bi-conditional iff. Given 𝑎2 | 𝑏2 and 𝑤, 𝑧 ∈ ℤ, then

𝑏2 = 𝑎2𝑤,

and we can split the factors, and set 𝑧 = 𝑎𝑤, show that,

𝑏(𝑏) = 𝑎(𝑎𝑤)
𝑏(𝑏) = 𝑎𝑧

𝑎 | 𝑏 ∗ 𝑏

Thus 𝑎 | 𝑏 ⇐⇒ 𝑎2 | 𝑏2. ■



Proof of Exercise 26: Given that
(𝑝
𝑘

)
=

𝑝!

𝑘!(𝑝−𝑘)! , then we can split this fractions into terms such that 𝑝! is

divisible by 𝑝.

𝑝!

𝑘!(𝑝 − 𝑘)! = 𝑝
(𝑝 − 1)!
𝑘!(𝑝 − 𝑘)!

Note that since, (𝑝 − 1), 𝑘, 𝑎𝑛𝑑 (𝑝 − 𝑘) are all less than p, they are not divisible due to the definition of a prime
and what we proved in Question 10. Note that, (𝑝 − 1), 𝑘, 𝑎𝑛𝑑 (𝑝 − 𝑘) are integers, and since they are multiples
of numbers that are less than p, then p cannot divide these integers. However, there is a problem, we don’t know

if the fraction
(𝑝−1)!
𝑘!(𝑝−𝑘)! is also an integer. Consider that

𝑝!

𝑘!(𝑝 − 𝑘)! = 𝑚

𝑝! = 𝑚𝑘!(𝑝 − 𝑘)!
𝑝(𝑝 − 1)! = 𝑚𝑘!(𝑝 − 𝑘)!

𝑝 | 𝑚𝑘!(𝑝 − 𝑘)!

Then p divides 𝑚, 𝑘!, 𝑜𝑟 (𝑝 − 𝑘)!, and as we stated before, all but m are less than p, therefore indivisible. And

since 𝑝 | 𝑚, and 𝑚 =
𝑝!

𝑘!(𝑝−𝑘)! =
(𝑝
𝑘

)
, then 𝑝 |

(𝑝
𝑘

)
. ■
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